Skip to main content
Log in

A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a weak form quadrature element formulation of a geometrically nonlinear shell model is proposed and applied for analysis of laminated composite shell structures. Thickness stretch parameters of the shell are incorporated for introducing 3D constitutive relations in the formulation. A drilling rotation constraint on the basis of polar decomposition of a modified deformation gradient is enforced by the Lagrange multiplier method and employed for implementing spatial finite rotations. The present formulation is shown to be feasible to model complex structures and circumvent locking problems naturally. A series of numerical benchmark examples are presented to demonstrate the validity of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Naghdi, P.M.: The theory of shells and plates. In: Truesdell, C. (ed.) Handbuch der Physik a/2, vol. 6, pp. 425–640. Berlin, Springer (1972)

    Google Scholar 

  2. MacNeal, R.H., Wilson, C.T., Harder, R.L., Hoff, C.C.: The treatment of shell normals in finite element analysis. Finite Elem. Anal. Des. 30, 235–242 (1998)

    MATH  Google Scholar 

  3. Brank, B., Korelc, J., Ibrahimberović, A.: Nonlinear shell formulation accounting for through-the-thickness stretching and its finite element implementation. Comp. Struct. 80, 699–717 (2002)

    Google Scholar 

  4. Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching. Comp. Methods. Appl. Mech. Eng. 81, 91–126 (1990)

    MATH  Google Scholar 

  5. Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Meth. Eng. 37, 2551–2568 (1994)

    MATH  Google Scholar 

  6. Braun, M., Bischoff, M., Ramm, E.: Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput. Mech. 15, 1–18 (1994)

    MATH  Google Scholar 

  7. Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)

    MATH  Google Scholar 

  8. Brank, B.: Nonlinear shell models with seven kinematic parameters. Comp. Methods. Appl. Mech. Eng. 194, 2336–2362 (2005)

    MATH  Google Scholar 

  9. Payette, G.S., Reddy, J.N.: A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comp. Methods. Appl. Mech. Eng. 278, 664–704 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Yamamoto, T., Yamada, T., Matsui, K.: A quadrilateral shell element with degree of freedom to represent thickness-stretch. Comput. Mech. 59, 625–646 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Leonetti, L., Liguori, F., Magisano, D., Garcea, G.: An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells. Comp. Methods. Appl. Mech. Eng. 331, 159–183 (2018)

    MathSciNet  Google Scholar 

  12. Allman, D.J.: A compatible triangular element including vertex rotations for plane elasticity problems. Comp. Struct. 19, 1–8 (1984)

    MATH  Google Scholar 

  13. Hughes, T.J.R., Brezzi, f: On drilling degrees of freedom. Comp. Methods. Appl. Mech. Eng. 72, 105–121 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Kugler, S., Fotiu, P.A., Murin, J.: A highly efficient membrane finite element with drilling degrees of freedom. Acta. Mech. 213, 323–348 (2010)

    MATH  Google Scholar 

  15. Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods. Appl. Mech. Eng. 98, 329–343 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Rebel, G.: Finite Rotation Shell Theory Including Drill Rotations and Its Finite Element Implementations. Phd dissertation, Delft University of Technology (1998)

  17. Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Methods. Eng. 35, 63–94 (1992)

    MATH  Google Scholar 

  18. Chróścielewski, J., Kreja, I., Sabik, A., Witkowski, W.: Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mech. Adv. Mater. Struct. 18, 403–419 (2011)

    Google Scholar 

  19. Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory. Thin Wall. Struct. 105, 207–219 (2016)

    Google Scholar 

  20. Yang, Y.B., Chang, J.T., Yau, J.D.: A simple nonlinear triangular plate element and strategies of computation for nonlinear analysis. Comp. Meth. in Appl. Mech. Eng. 178, 307–321 (1999)

    MATH  Google Scholar 

  21. Yang, Y.B., Lin, S.P., Chen, C.S.: Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation. Comp. Meth. in Appl. Mech. Eng. 196(7), 1178–1192 (2007)

    MATH  Google Scholar 

  22. Yang, Y.B., Lin, S.P., Leu, L.J.: Solution strategy and rigid element for nonlinear analysis of elastic structures based on updated Lagrangian formulation. Eng. Struct. 29(6), 1189–1200 (2007)

    Google Scholar 

  23. Yang, Y.B., Lin, S.P., Wang, C.M.: Rigid element approach for deriving the geometric stiffness of curved beams for use in buckling analysis. J. Struct. Eng., ASCE 133(12), 1762–1771 (2007)

    Google Scholar 

  24. Zhong, H., Yu, T.: Flexural vibration analysis of an eccentric annular Mindlin plate. Arch. Appl. Mech. 77(4), 185–195 (2007)

    MATH  Google Scholar 

  25. Zhong, H., Yu, T.: A weak form quadrature element method for plane elasticity problems. Appl. Math. Model. 33(10), 3801–3814 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Bellman, R.E., Casti, J.: Differential quadrature and long term integration. J. Math. Anal. Appl. 34, 235–238 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Striz, A.G., Chen, W.L., Bert, C.W.: Static analysis of structures by the quadrature element method (QEM). Int. J. Solids Struct. 31(20), 2807–2818 (1994)

    MATH  Google Scholar 

  28. Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014)

    Google Scholar 

  29. Zhang, R., Zhong, H.: Weak form quadrature element analysis of geometrically exact shells. Int. J. Non-linear Mech. 71, 63–71 (2015)

    Google Scholar 

  30. Zhang, R., Zhong, H.: A weak form quadrature element formulation for geometrically exact thin shell analysis. Comp. Struct. 202, 44–59 (2018)

    Google Scholar 

  31. He, R., Zhong, H.: Large deflection of elasto-plastic analysis of frames using the weak form quadrature element method. Finite Elem. Anal. Des. 509, 125–133 (2012)

    Google Scholar 

  32. Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of strain-invariant finite element for statics and dynamics. Comp. Methods. Appl. Mech. Eng. 171, 141–171 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, R., Zhong, H.: A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Comput. Mech. 63, 663–679 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Meth. Eng. 9(2), 87–140 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theories and Analysis, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  36. Crisfield, M.A.: Non-linear finite element analysis of solids and structures: volume 2: advanced topics. Wiley, West Sussex (1997)

    MATH  Google Scholar 

  37. Davis, P.I., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  38. Knight, N.F.: The Raasch challenge for shell elements. AIAA J. 75, 237–250 (1997)

    MATH  Google Scholar 

  39. ABAQUS, Version 6.14., 2014. Dassault Systèmes Simulia Corp., Providence, RI, USA

  40. Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)

    Google Scholar 

  41. Wardle, B.L.: Solution to the incorrect benchmark shell-buckling problem. AIAA J. 46(2), 381–387 (2008)

    Google Scholar 

  42. Zhou, Y., Stanciulescu, I., Eason, T., Spottswood, M.: Nonlinear elastic buckling and postbuckling analysis of cylindrical panels. Finite Elem. Anal. Des. 96, 41–50 (2015)

    MathSciNet  Google Scholar 

  43. Stanić, A., Brank, B., Korelc, J.: On path-following methods for structural failure problems. Comput. Mech. 58, 281–306 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Basar, Y., Ding, Y.H.: Finite-rotation elements for the non-linear analysis of thin shell structures. Int. J. Solids. Struct. 26(1), 83–97 (1990)

    MATH  Google Scholar 

  45. Simo, J.C.: On a stress resultant geometrically exact shell model. Part VII: shell intersections with 5/6-DOF finite element formulations. Comp. Methods. Appl. Mech. Eng. 108, 319–339 (1993)

    MATH  Google Scholar 

  46. Li, Z., Li, T., Vu-Quoc, L., Izzuddin, B.A., Zhuo, X., Fang, Q.: A nine-node corotational curved quadrilateral shell element for smooth, folded, and multishell structures. Int. J. Numer. Methods. Eng. 116, 570–600 (2018)

    MathSciNet  Google Scholar 

  47. Talbot, M., Dhatt, G.: Three discrete Kirchhoff elements for shell analysis with large geometrical non-linearities and bifurcations. Eng. Comput. 4, 15–22 (1987)

    Google Scholar 

  48. Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comp. Methods. Appl. Mech. Eng. 141, 1–46 (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

The present investigation was performed with the support of the National Natural Science Foundation of China (No. 11702098), the Fundamental Research Funds for the Central Universities (2019MS122) and the China Scholarship Council (201906155033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Expression of element tangent stiffness matrix

Appendix: Expression of element tangent stiffness matrix

The element tangent stiffness matrix \(\mathbf{K }^{(e)}\) consists of three parts corresponding to \(\mathbf {G}_{\mathrm{int}}^{(e)} \), \(\mathbf {G}_{\mathrm{ext}}^{(e)} \) and \(\mathbf {G}_{c}^{(e)} \) in the element residual force vector as

$$\begin{aligned} \mathbf{K }^{(e)}=\mathbf{K }_{\mathrm{int}}^{(e)} +\mathbf{K }_{\mathrm{ext}}^{(e)} +\mathbf{K }_{c}^{(e)} . \end{aligned}$$
(A.1)

The element internal tangent stiffness matrix can be derived from Eq. (56) as

$$\begin{aligned} \mathbf{K }_{{\mathrm{int}} }^{(e)} = \sum \limits _{i = 1}^m {\sum \limits _{j = 1}^n {{w_i}{w_j}\left| {\mathbf{J _{ij}}} \right| \sum \limits _{p = 1}^{nl} {\sum \limits _{k = 0}^2 {\sum \limits _{l = 0}^2 {{a_{(k + l)(p)\hbox {ij}}}\left[ {\tilde{\mathbf{C }}_{ij}^T{\bar{\mathbf{J }}}_{ij}^T{{\left( {\mathbf{A ^{(l)\mathrm{T}}}\mathbf{C _{(p)}}\mathbf{A ^{(k)}} + {\varvec{\Xi }} _{(p)}^{(k + l)}} \right) }_{ij}}{{{\bar{\mathbf{J }}}}_{ij}}{{{\tilde{\mathbf{C }}}}_{ij}} + {\varvec{\Gamma }} _{(p)ij}^{(k + l)}} \right] .} } } } }\nonumber \\ \end{aligned}$$
(A.2)

The expressions of matrices \(\varvec{\Xi }^{(k+l)}\) are

$$\begin{aligned} \varvec{\Xi }^{(0+k)}=\left[ {{\begin{array}{*{20}c} {s^{11(k)}\mathbf {I}_{3\times 3} } &{} {\frac{s^{12(k)}\mathbf {I}_{3\times 3} }{2}} &{} {\frac{us^{13(k)}\mathbf {I}_{3\times 3} }{2}} &{} {\mathbf{0 }_{3\times 6} } &{} {\frac{s^{13(k)}\mathbf {t}}{2}} &{} {\mathbf{0 }_{3\times 5} } \\ &{} {s^{22(k)}\mathbf {I}_{3\times 3} } &{} {\frac{us^{23(k)}\mathbf {I}_{3\times 3} }{2}} &{} {\mathbf{0 }_{3\times 6} } &{} {\frac{s^{23(k)}\mathbf {t}}{2}} &{} {\mathbf {0}_{3\times 5} } \\ &{} &{} {s^{33(k)}u^{2}\mathbf {I}_{3\times 3} } &{} {\mathbf{0 }_{3\times 6} } &{} {\frac{s^{13(k)}\mathbf {r},_{1} + s^{23(k)}\mathbf {r},_{2} }{2}+ 2s^{33(k)}\varvec{\upphi }} &{} {\mathbf{0 }_{3\times 5} } \\ &{} &{} &{} {\mathbf{0 }_{6\times 6} } &{} {\mathbf{0 }_{6\times 1} } &{} {\mathbf{0 }_{6\times 5} } \\ &{} {\mathrm{sym}} &{} &{} &{} {s^{33(k)}\left\| {\mathbf {t}} \right\| ^{2}} &{} {\mathbf{0 }_{3\times 5} } \\ &{} &{} &{} &{} &{} {\mathbf{0 }_{5\times 5} } \\ \end{array} }} \right] \end{aligned}$$
(A.3)

and

(A.4)

with the sub-matrices

$$\begin{aligned} \varvec{\Xi }_{11}^{(1+k)}= & {} \left[ {{\begin{array}{*{20}c} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } &{} {\left( {s^{11(k)}u,_{1} + s^{13(k)}q+ \frac{s^{12(k)}u,_{2} }{2}} \right) \mathbf {I}_{3\times 3} } &{} {us^{11(k)}\mathbf {I}_{3\times 3} } &{} {\frac{us^{12(k)}}{2}\mathbf {I}_{3\times 3} } \\ &{} {\mathbf {0}_{3\times 3} } &{} {\left( {s^{22(k)}u,_{2} + s^{23(k)}q+ \frac{s^{12(k)}u,_{1} }{2}} \right) \mathbf {I}_{3\times 3} } &{} {\frac{us^{12(k)}}{2}\mathbf {I}_{3\times 3} } &{} {us^{22(k)}\mathbf {I}_{3\times 3} } \\ &{} &{} {\left( {s^{13(k)}uu,_{1} + s^{23(k)}uu,_{2} + 4s^{33(k)}uq} \right) \mathbf {I}_{3\times 3} } &{} {\frac{s^{13(k)}u^{2}}{2}\mathbf {I}_{3\times 3} } &{} {\frac{s^{23(k)}u^{2}}{2}\mathbf {I}_{3\times 3} } \\ &{} {\mathrm{sym}} &{} &{} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } \\ &{} &{} &{} &{} {\mathbf {0}_{3\times 3} } \\ \end{array} }} \right] , \end{aligned}$$
(A.5)
$$\begin{aligned} \varvec{\Xi }_{12}^{(1+ k)}= & {} \left[ {{\begin{array}{*{20}c} {s^{11(k)}\mathbf {t},_{1} + \frac{s^{12(k)}\mathbf {t},_{2} }{2}} &{} {s^{11(k)}\mathbf {t}} &{} {\frac{s^{12(k)}\mathbf {t}}{2}} &{} {s^{13(k)}\mathbf {t}} &{} {\mathbf {0}_{3\times 2} } \\ {s^{22(k)}\mathbf {t},_{2} + \frac{s^{12(k)}\mathbf {t},_{1} }{2}} &{} {\frac{s^{12(k)}\mathbf {t}}{2}} &{} {s^{22(k)}\mathbf {t}} &{} {s^{23(k)}\mathbf {t}} &{} {\mathbf {0}_{3\times 2} } \\ {s^{13(k)}\mathbf {d},_{1} + s^{23(k)}\mathbf {d},_{2} + 4s^{33(k)}\varvec{\upphi }} &{} {s^{11(k)}\mathbf {r},_{1} + s^{13(k)}\mathbf {d}+ \frac{s^{12(k)}\mathbf {r},_{2} }{2}} &{} {s^{22(k)}\mathbf {r},_{2} + s^{23(k)}\mathbf {d}+ \frac{s^{12(k)}\mathbf {r},_{1} }{2}} &{} {s^{13(k)}\mathbf {r},_{1} + s^{23(k)}\mathbf {r},_{2} + 4s^{33(k)}\mathbf {d}} &{} {\mathbf {0}_{3\times 2} } \\ {s^{11(k)}\mathbf {r},_{1} + s^{13(k)}\mathbf {d}+ \frac{s^{12(k)}\mathbf {r},_{2} }{2}} &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 2} } \\ {s^{22(k)}\mathbf {r},_{2} + s^{23(k)}\mathbf {d}+ \frac{s^{12(k)}\mathbf {r},_{1} }{2}} &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 2} } \\ \end{array} }} \right] , \nonumber \\ \end{aligned}$$
(A.6)
$$\begin{aligned} \varvec{\Xi }_{22}^{(1+k)}= & {} \left[ {{\begin{array}{*{20}c} {s^{13(k)}\mathbf {t},_{1}^{T} \mathbf {t}+s^{23(k)}\mathbf {t},_{2}^{T} \mathbf {t}} &{} {\frac{s^{13(k)}\mathbf {t}^{T}\mathbf {t}}{2}} &{} {\frac{s^{23(k)}\mathbf {t}^{T}\mathbf {t}}{2}} &{} {2s^{33(k)}\mathbf {t}^{T}\mathbf {t}} &{} {\mathbf {0}_{3\times 2} } \\ &{} 0 &{} 0 &{} 0 &{} {\mathbf {0}_{1\times 2} } \\ &{} &{} 0 &{} 0 &{} {\mathbf {0}_{1\times 2} } \\ &{} {\mathrm{sym}} &{} &{} 0 &{} {\mathbf {0}_{1\times 2} } \\ &{} &{} &{} &{} {\mathbf {0}_{1\times 2} } \\ \end{array} }} \right] , \end{aligned}$$
(A.7)

and

$$\begin{aligned}&\varvec{\Xi }_{11}^{(2+k)}\nonumber \\&=\left[ {{\begin{array}{*{20}c} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } &{} {\left( {s^{11(k)}q,_{1} + \frac{s^{22(k)}q,_{2} }{2}} \right) \mathbf {I}_{3\times 3} } &{} {s^{11(k)}q\mathbf {I}_{3\times 3} } &{} {\frac{s^{12(k)}q\mathbf {I}_{3\times 3} }{2}} &{} {\mathbf {0}_{3\times 1} } \\ &{} {\mathbf {0}_{3\times 3} } &{} {\left( {s^{22(k)}q,_{2} + \frac{s^{12(k)}q,_{1} }{2}} \right) \mathbf {I}_{3\times 3} } &{} {\frac{s^{12(k)}q}{2}\mathbf {I}_{3\times 3} } &{} {s^{22(k)}q\mathbf {I}_{3\times 3} } &{} {\mathbf {0}_{3\times 1} } \\ &{} &{} {\left( {\begin{array}{l} s^{11(k)}u,_{1}^{2} + s^{22(k)}u,_{2}^{2} \\ + 4s^{33(k)}q^{2}+ s^{12(k)}u,_{1} u,_{2} \\ + s^{13(k)}q,_{1} u,_{1} + s^{23(k)}q,_{2} u,_{2} \\ \end{array}} \right) \mathbf {I}_{3\times 3} } &{} {\left( {\begin{array}{l} s^{11(k)}uu,_{1} + \frac{s^{12(k)}uu,_{2} }{2} \\ + \frac{3s^{13(k)}qu}{2} \\ \end{array}} \right) \mathbf {I}_{3\times 3} } &{} {\left( {\begin{array}{l} s^{22(k)}uu,_{2} + \frac{s^{12(k)}uu,_{1} }{2} \\ + \frac{3s^{23(k)}qu}{2} \\ \end{array}} \right) \mathbf {I}_{3\times 3} } &{} {\left( {\begin{array}{l} s^{11(k)}\mathbf {d},_{1} + s^{22(k)}\mathbf {d},_{2} \\ + \frac{u,_{1} \mathbf {t},_{2} + u,_{2} \mathbf {t},_{1} }{2}s^{12(k)} \\ + s^{13(k)}\varvec{\upphi },_{1} + s^{23(k)}\varvec{\upphi },_{2} \\ \end{array}} \right) } \\ &{} &{} &{} {s^{11(k)}u^{2}\mathbf {I}_{3\times 3} } &{} {\frac{s^{12(k)}u^{2}\mathbf {I}_{3\times 3} }{2}} &{} {\left( {\begin{array}{l} s^{11(k)}\mathbf {d},_{1} + s^{12(k)}\mathbf {d},_{2} \\ + \frac{3}{2}s^{13(k)}\mathbf {d} \\ \end{array}} \right) } \\ &{} &{} {\mathrm{sym}} &{} &{} {s^{22(k)}u^{2}\mathbf {I}_{3\times 3} } &{} {\left( {\begin{array}{l} s^{22(k)}\mathbf {d},_{2} + s^{12(k)}\mathbf {d},_{1} \\ + \frac{3}{2}s^{23(k)}\mathbf {d} \\ \end{array}} \right) } \\ &{} &{} &{} &{} &{} {\left( {\begin{array}{l} s^{11(k)}\left\| {\mathbf {t},_{1} } \right\| ^{2}+ s^{22(k)}\left\| {\mathbf {t},_{2} } \right\| ^{2} \\ + s^{12(k)}\mathbf {t},_{1}^{T} \mathbf {t},_{2} \\ \end{array}} \right) } \\ \end{array} }} \right] , \nonumber \\ \end{aligned}$$
(A.8)
$$\begin{aligned}&\varvec{\Xi }_{12}^{(2+ k)} =\left[ {{\begin{array}{*{20}c} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } &{} {s^{11(k)}\mathbf {t},_{1} + \frac{s^{12(k)}\mathbf {t},_{2} }{2}} &{} {s^{11(k)}\mathbf {t}} &{} {\frac{s^{12(k)}\mathbf {t}}{2}} \\ {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } &{} {s^{22(k)}\mathbf {t},_{1} + \frac{s^{12(k)}\mathbf {t},_{2} }{2}} &{} {\frac{s^{12(k)}\mathbf {t}}{2}} &{} {s^{22(k)}\mathbf {t}} \\ {\left( {\begin{array}{l} s^{11(k)}\mathbf {d},_{1} + \frac{s^{12(k)}\mathbf {d},_{2} }{2} \\ + 2s^{13(k)}\varvec{\upphi } \\ \end{array}} \right) } &{} {\left( {\begin{array}{l} s^{22(k)}\mathbf {d},_{2} + \frac{s^{12(k)}\mathbf {d},_{1} }{2} \\ + 2s^{23(k)}\varvec{\upphi } \\ \end{array}} \right) } &{} {\left( {\begin{array}{l} s^{13(k)}\mathbf {d},_{1} + s^{23(k)}\mathbf {d},_{2} \\ + 8s^{33(k)}\varvec{\upphi } \\ \end{array}} \right) } &{} {\left( {\begin{array}{l} s^{11(k)}\mathbf {r},_{1} + \frac{s^{12(k)}\mathbf {r},_{2} }{2} \\ + s^{13(k)}\mathbf {d} \\ \end{array}} \right) } &{} {\left( {\begin{array}{l} s^{22(k)}\mathbf {r},_{2} + \frac{s^{12(k)}\mathbf {r},_{1} }{2} \\ + s^{23(k)}\mathbf {d} \\ \end{array}} \right) } \\ {s^{11(k)}\mathbf {d}} &{} {\frac{s^{12(k)}\mathbf {d}}{2}} &{} {\left( {\begin{array}{l} s^{11(k)}\mathbf {r},_{1} + \frac{s^{12(k)}\mathbf {r},_{2} }{2} \\ + \frac{3}{2}s^{13(k)}\mathbf {d} \\ \end{array}} \right) } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } \\ {\frac{s^{12(k)}\mathbf {d}}{2}} &{} {s^{22(k)}\mathbf {d}} &{} {\left( {\begin{array}{l} s^{22(k)}\mathbf {r},_{2} + \frac{s^{12(k)}\mathbf {r},_{1} }{2} \\ + \frac{3}{2}s^{23(k)}\mathbf {d} \\ \end{array}} \right) } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } \\ {s^{11(k)}\mathbf {t},_{1}^{T} \mathbf {t}+ \frac{s^{12(k)}\mathbf {t},_{2}^{T} \mathbf {t}}{2}} &{} {s^{22(k)}\mathbf {t},_{2}^{T} \mathbf {t}+ \frac{s^{12(k)}\mathbf {t},_{1}^{T} \mathbf {t}}{2}} &{} {\frac{3}{2}\left( {s^{13(k)}\mathbf {t},_{1}^{T} \mathbf {t+ }s^{23(k)}\mathbf {t},_{2}^{T} \mathbf {t}} \right) } &{} {\frac{s^{13(k)}\left\| {\mathbf {t}} \right\| ^{2}}{2}} &{} {\frac{s^{23(k)}\left\| {\mathbf {t}} \right\| ^{2}}{2}} \\ \end{array} }} \right] , \end{aligned}$$
(A.9)
$$\begin{aligned}&\varvec{\Xi }_{22}^{(2+k)} =\left[ {{\begin{array}{*{20}c} {s^{11(k)}\left\| {\mathbf {t}} \right\| ^{2}} &{} {\frac{s^{12(k)}\left\| {\mathbf {t}} \right\| ^{2}}{2}} &{} {s^{13(k)}\left\| {\mathbf {t}} \right\| ^{2}} &{} {\mathbf {0}_{1\times 2} } \\ &{} {s^{22(k)}\left\| {\mathbf {t}} \right\| ^{2}} &{} {s^{23(k)}\left\| {\mathbf {t}} \right\| ^{2}} &{} {\mathbf {0}_{1\times 2} } \\ &{} &{} {4s^{33(k)}\left\| {\mathbf {t}} \right\| ^{2}} &{} {\mathbf {0}_{1\times 2} } \\ {\mathrm{sym}} &{} &{} &{} {\mathbf {0}_{2\times 2} } \\ \end{array} }} \right] . \end{aligned}$$
(A.10)

With the definition of the vector

$$\begin{aligned} \mathbf {v}^{(k+l)}={\bar{\mathbf {J}}}^{T}\mathbf {A}^{(k)T}\mathbf {C}_{(p)} \varvec{\upvarepsilon }^{(l)}, \end{aligned}$$
(A.11)

the matrix \(\varvec{\Gamma }_{ij}^{(k+l)} \) is written as

$$\begin{aligned} \varvec{\Gamma }_{ij}^{(k+l)} =\hbox {diag}\left[ {{\begin{array}{*{20}c} {\varvec{\Gamma }_{(ij)(11)}^{(k+l)} } &{} \cdots &{} {\varvec{\Gamma }_{(ij)(st)}^{(k+l)} } &{} \cdots &{} {\varvec{\Gamma }_{(ij)(mn)}^{(k+l)} } \\ \end{array} }} \right] , \end{aligned}$$
(A.12)

where

$$\begin{aligned} \varvec{\Gamma }_{(ij)(st)}^{(k+l)} =\left[ {{\begin{array}{*{20}c} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } \\ {\mathbf {0}_{3\times 3} } &{} {\left[ {\begin{array}{l} \delta _{is} \delta _{jt} \left( {\mathbf {t}_{st} \otimes \mathbf {v}_{ij(3)}^{(k+l)} -\hbox {t}_{kl}^{T} \mathbf {v}_{ij(3)}^{(k+l)} \mathbf {I}_{3\times 3} } \right) \\ +\delta _{jt} C_{is}^{(1,m)} \left( {\mathbf {t}_{st} \otimes \mathbf {v}_{ij(4)}^{(k+l)} -\hbox {t}_{kl}^{T} \mathbf {v}_{ij(4)}^{(k+l)} \mathbf {I}_{3\times 3} } \right) \\ +\delta _{is} C_{jt}^{(1,n)} \left( {\mathbf {t}_{st} \otimes \mathbf {v}_{ij(5)}^{(k+l)} -\hbox {t}_{kl}^{T} \mathbf {v}_{ij(5)}^{(k+l)} \mathbf {I}_{3\times 3} } \right) \\ \end{array}} \right] } &{} {\mathbf {0}_{3\times 3} } \\ {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } \\ \end{array} }} \right] , \end{aligned}$$
(A.13)

with \(\mathbf {v}_{(i)}^{(k+l)}\) being the \(i\hbox {th}\) term of \(\mathbf {v}^{(k+l)}\).

By defining the following matrices

$$\begin{aligned} \mathbf{H }_{v}= & {} \left[ {{\begin{array}{*{20}c} {\mathbf{0 }_{3\times 3} } &{} {\mathbf{0 }_{3\times 3} } &{} {\mathbf{0 }_{3\times 1} } &{} {\mathbf{0 }_{3\times 1} } \\ &{} {\left( {a_{1} u+a_{2} q} \right) \left( {\mathbf {t}\otimes \mathbf {p}-\mathbf {p}^{T}\mathbf {tI}_{3\times 3} } \right) } &{} {a_{1} {\hat{\mathbf {t}}\mathbf{p }}} &{} {a_{2} {\hat{\mathbf {t}}\mathbf{p }}} \\ &{} &{} 0 &{} 0 \\ {\mathrm{sym}} &{} &{} &{} 0 \\ \end{array} }} \right] ,\nonumber \\ {\bar{\mathbf{H }}}_{a}^{\pm }= & {} \left[ {{\begin{array}{*{20}c} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } \\ &{} {\left[ {h_{0}^{\pm } u+\left( {h_{0}^{\pm } } \right) ^{2}q} \right] \left( {\mathbf {t}\otimes {\bar{\mathbf {p}}}^{\pm }-\mathbf {t}^{T}{\bar{\mathbf {p}}}^{\pm }\mathbf {I}_{3\times 3} } \right) } &{} {h_{0}^{\pm } {\hat{\mathbf {t}}\bar{{\mathbf{p }}}}^{\pm }} &{} {\left( {h_{0}^{\pm } } \right) ^{2}{\hat{\mathbf {t}}\bar{{\mathbf{p }}}}^{\pm }} \\ &{} &{} 0 &{} 0 \\ {\mathrm{sym}} &{} &{} &{} 0 \\ \end{array} }} \right] ,\nonumber \\ {\tilde{\mathbf{H }}}_{e}^{\pm }= & {} \left[ {{\begin{array}{*{20}c} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 3} } &{} {\mathbf {0}_{3\times 1} } &{} {\mathbf {0}_{3\times 1} } \\ &{} {\left[ {h_{0}^{\pm } u+\left( {h_{0}^{\pm } } \right) ^{2}q} \right] \left( {\mathbf {t}\otimes {\tilde{\mathbf {p}}}^{\pm }-\mathbf {t}^{T}{\tilde{\mathbf {p}}}^{\pm }\mathbf {I}_{3\times 3} } \right) } &{} {h_{0}^{\pm } {\hat{\mathbf {t}}\tilde{{\mathbf{p }}}}^{\pm }} &{} {\left( {h_{0}^{\pm } } \right) ^{2}{\hat{\mathbf {t}}\tilde{{\mathbf{p }}}}^{\pm }} \\ &{} &{} 0 &{} 0 \\ {\mathrm{sym}} &{} &{} &{} 0 \\ \end{array} }} \right] , \end{aligned}$$
(A.14)

the element external tangent stiffness matrix has the form

$$\begin{aligned} \mathbf {K}_{\mathrm{ext}}^{(e)}= & {} \sum \limits _{i=1}^m {\sum \limits _{j=1}^n {w_{i} w_{j} \left| {\mathbf {J}} \right| _{ij} \mathbf {M}_{ij}^{T} \left( {\mathbf {H}_{vij} +\mu _{ij}^{+} {\bar{\mathbf {H}}}_{aij}^{+} +\mu _{ij}^{-} {\bar{\mathbf {H}}}_{aij}^{-} } \right) \mathbf {M}_{ij} } } \nonumber \\&+\,\sum \limits _k {\sum \limits _{i=1}^m {w_{i} \mathbf {M}_{ik}^{T} \left( {j_{1ik}^{+} {\tilde{\mathbf {H}}}_{eik}^{+} +j_{1ik}^{-} {\tilde{\mathbf {H}}}_{eil}^{-} } \right) \mathbf {M}_{ik} } }\nonumber \\&+\,\sum \limits _l {\sum \limits _{j=1}^m {w_{j} \mathbf {M}_{lj}^{T} \left( {j_{2lj}^{+} {\tilde{\mathbf {H}}}_{elj}^{+} +j_{2lj}^{-} {\tilde{\mathbf {H}}}_{elj}^{-} } \right) \mathbf {M}_{lj}. } } \end{aligned}$$
(A.15)

The element tangent stiffness derived from the kinematic constraint term is presented as

$$\begin{aligned} \mathbf {K}_{c}^{(e)} =\sum \limits _{i=1}^m {\sum \limits _{j=1}^n {w_{i} w_{j} j_{0ij} \left| {\mathbf {J}} \right| _{ij} {\tilde{\mathbf {B}}}_{ij}^{T} \mathbf {H}_{cij} {\tilde{\mathbf {B}}}_{ij} } } \end{aligned}$$
(A.16)

with the matrix

$$\begin{aligned} \mathbf {H}_{cij} =\left[ {{\begin{array}{*{20}c} {\mathbf {H}_{c11} } &{} \cdots &{} {\mathbf {H}_{c14} } \\ \vdots &{} \ddots &{} \vdots \\ {\mathbf {H}_{c41} } &{} \cdots &{} {\mathbf {H}_{c44} } \\ \end{array} }} \right] _{ij} . \end{aligned}$$
(A.17)

The sub-matrices in Eq. (A.17) are

$$\begin{aligned} \mathbf {H}_{c11}= & {} \lambda \varvec{\Phi \Omega }_{1} \varvec{\Phi };\nonumber \\ \mathbf {H}_{c12}= & {} \mathbf {H}_{c21} =\mathbf {0}_{3\times 3} ;\nonumber \\ \mathbf {H}_{c13}= & {} \mathbf {H}_{c31}^{T} =\lambda \varvec{\Phi \Omega }_{1} \varvec{\Upsilon }_{1} {\hat{\mathbf {t}}}+\lambda \mathbf {t}^{T}\varvec{\Psi }_{1} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} {\hat{\mathbf {t}}}-\lambda \mathbf {t}\otimes {\hat{\mathbf {t}}\Psi }_{1} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} -\lambda \varvec{\Phi }\varvec{\Psi }_{1} {\varvec{\Lambda }}{\hat{{\bar{\varvec{\uptau }}}}}_{0} {\varvec{\Lambda }}^{T};\nonumber \\ \mathbf {H}_{c14}= & {} \mathbf {H}_{c41}^{T} =\varvec{\Phi }\varvec{\Psi }_{1} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0}, \end{aligned}$$
(A.18)
$$\begin{aligned} \mathbf {H}_{c22}= & {} \lambda \varvec{\Phi \Omega }_{2} \varvec{\Phi };\nonumber \\ \mathbf {H}_{c23}= & {} \mathbf {H}_{c32}^{T} =\lambda \varvec{\Phi }\varvec{\Psi }_{2} {\varvec{\Lambda }}{\hat{{\bar{\varvec{\uptau }}}}}_{0} \varvec{\Lambda }^{T}-\lambda \varvec{\Phi \Omega }_{2} \varvec{\Upsilon }_{2} {\hat{\mathbf {t}}}-\lambda \mathbf {t}^{T}\varvec{\Psi }_{2} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} {\hat{\mathbf {t}}}-\lambda \left( {\mathbf {t}\otimes \varvec{\Psi }_{2} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} } \right) {\hat{\mathbf {t}}};\nonumber \\ \mathbf {H}_{c24}= & {} \mathbf {H}_{c42}^{T} =-\varvec{\Phi }\varvec{\Psi }_{2} \varvec{\Lambda \bar{{\uptau }}}_{0}, \end{aligned}$$
(A.19)
$$\begin{aligned} \mathbf {H}_{c33}= & {} \lambda \varvec{\Lambda \hat{{\bar{{\uptau }}}}}_{0} {\varvec{\Lambda }}^{T}\left( {\varvec{\Psi }_{1} \varvec{\Upsilon }_{1} -\varvec{\Psi }_{2} \varvec{\Upsilon }_{2} } \right) {\hat{\mathbf {t}}+} {\varvec{\lambda }} {\hat{{\bar{\varvec{\uptau }}}}\Lambda \hat{{\bar{{\uptau }}}}}_{0} {\varvec{\Lambda }}^{T} \nonumber \\&+\,\lambda \left[ {\mathbf {t}\otimes \left( {\varvec{\Upsilon }_{2}^{T} \varvec{\Psi }_{2} -\varvec{\Upsilon }_{1}^{T} \varvec{\Psi }_{1} } \right) {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} -\mathbf {t}^{T}\left( {\varvec{\Upsilon }_{2}^{T} \varvec{\Psi }_{2} -\varvec{\Upsilon }_{1}^{T} \varvec{\Psi }_{1} } \right) {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} \mathbf {I}_{3\times 3} } \right] \nonumber \\&-\,\lambda {\hat{\mathbf {t}}}\left( {\mathbf {r},_{2} \otimes \varvec{\Psi }_{2} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} +\varvec{\Psi }_{2} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} \otimes \mathbf {r},_{2} +\mathbf {r},_{1} \otimes \varvec{\Psi }_{1} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} +\varvec{\Psi }_{1} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} \otimes \mathbf {r},_{1} } \right) {\hat{\mathbf {t}}} \nonumber \\&+\,\lambda {\hat{\mathbf {t}}}\left( {\varvec{\Upsilon }_{2}^{T} \varvec{\Omega }_{2} \varvec{\Upsilon }_{2} -\,\varvec{\Upsilon }_{1}^{T} \varvec{\Omega }_{1} \varvec{\Upsilon }_{1} } \right) {\hat{\mathbf {t}}}-\lambda {\hat{\mathbf {t}}}\left[ {\varvec{\Upsilon }_{2}^{T} \varvec{\Psi }_{2} -\varvec{\Upsilon }_{1}^{T} \varvec{\Psi }_{1} } \right] {\varvec{\Lambda }}{\hat{{\bar{\varvec{\uptau }}}}}_{0} {\varvec{\Lambda }}^{T}; \end{aligned}$$
(A.20)
$$\begin{aligned} \mathbf {H}_{c34}= & {} \mathbf {H}_{c43}^{T} =-\,{\hat{{\bar{\varvec{\uptau }}}}}{\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} +\,{\hat{\mathbf {t}}}\left[ {\varvec{\Upsilon }_{2}^{T} \varvec{\Psi }_{2} -\varvec{\Upsilon }_{1}^{T} \varvec{\Psi }_{1} } \right] {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} ;\nonumber \\ \mathbf {H}_{c44}= & {} 0, \end{aligned}$$
(A.21)

where

$$\begin{aligned} \varvec{\Omega }_{\alpha } =\frac{3\varvec{\uptau }_{\alpha }^{T} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} \left( {\varvec{\uptau }_{\alpha } \otimes \varvec{\uptau }_{\alpha } } \right) -\left\| {\varvec{\uptau }_{\alpha } } \right\| ^{2}\left( {{\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} \otimes \varvec{\uptau }_{\alpha } +\varvec{\uptau }_{\alpha } \otimes {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} +\varvec{\uptau }_{\alpha }^{T} {\varvec{\Lambda }}{\bar{\varvec{\uptau }}}_{0} \mathbf {I}_{3\times 3} } \right) }{\left\| {\varvec{\uptau }_{\alpha } } \right\| ^{5}}. \end{aligned}$$
(A.22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhong, H., Yao, X. et al. A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation. Acta Mech 231, 1685–1709 (2020). https://doi.org/10.1007/s00707-019-02606-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02606-5

Navigation