Skip to main content
Log in

A revisit of the elastic fields of straight disclinations with new solutions for a rigid core

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The classical solutions for straight disclinations in an infinite elastic solid have been obtained by integrating the results for disclination densities. In this paper, the equilibrium equations are solved directly for straight twist and wedge disclinations, subject to the boundary conditions of the defects and rigid body translations/rotations. For a twist or wedge disclination in an infinite solid, the current solutions, based on a core fixed at a point to remove rigid body motion, differ from the classical ones by the constant \(-\hbox {log }r_{i}\), where \(r_{i }\) is the radius of the disclination core. For a wedge disclination in an infinitely long cylinder, additional terms of the form 1 / r in the radial displacement and \(1/r^{2}\) in the stresses appear in the solutions. The dependence of the current and classical results on the Lamé constants highlights significant differences near the disclination line, which will impact studies of disclination relaxation such as crack nucleation and core amorphization. The energy of a singular wedge disclination in a cylinder without a core mostly underestimates that of a wedge disclination with a core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. l’École Norm. Supérieure 24, 401–517 (1907)

    Article  MATH  Google Scholar 

  2. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  3. Nabarro, F.R.N.: Theory of Crystal Dislocations. Clarendon Press, Oxford (1967)

    Google Scholar 

  4. de Wit, R.: Theory of disclinations: III. Continuous and discrete disclinations in isotropic elasticity. J. Res. Natl. Bur. Stand. A Phys. Chem. 77A(3), 359–368 (1973)

    Article  Google Scholar 

  5. de Wit, R.: Theory of disclinations: IV. Straight disclinations. J Res. Natl. Bur. Stand. A Phys. Chem. 77A(5), 607–658 (1973)

    Article  Google Scholar 

  6. Nazarov, A.A., Shenderova, O.A., Brenner, D.W.: On the disclination-structural unit model of grain boundaries. Mater. Sci. Eng. A 281, 148–155 (2000)

    Article  Google Scholar 

  7. Wu, M.S.: Exact solutions for a wedge disclination dipole in a transversely isotropic biomaterial. Int. J. Eng. Sci. 38, 1811–1835 (2000)

    Article  MATH  Google Scholar 

  8. Romanov, A.E.: Mechanics and physics of disclinations in solids. Eur. J. Mech. A/Solids 22, 727–741 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Romanov, A.E., Kolesnikova, A.L.: Application of disclination concept to solid structures. Prog. Mater. Sci. 54, 740–769 (2009)

    Article  Google Scholar 

  10. Cordier, P., Demouchy, S., Beausir, B., Taupin, V., Barou, F., Fressengeas, C.: Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507, 51–56 (2014)

    Article  Google Scholar 

  11. Wu, M.S.: Energy analysis of Zener-Griffith crack nucleation from a disclination dipole. Int. J. Plast. 100, 142–155 (2018)

    Article  Google Scholar 

  12. Romanov, A.E., Vladimirov, V.I.: Disclinations in crystalline solids. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 9, pp. 191–402. Elsevier, Amsterdam (1992)

    Google Scholar 

  13. Murnaghan, F.D.: Finite Deformation of an Elastic Solid. Wiley, New York (1951)

    MATH  Google Scholar 

  14. Shames, I.H., Cozzarelli, F.A.: Elastic and Inelastic Stress Analysis. Taylor & Francis, London (1997)

    Book  MATH  Google Scholar 

  15. Lur’e, A.I.: Three-dimensional Problems of the Theory of Elasticity. Interscience Publishers, New York (1964)

    MATH  Google Scholar 

  16. Gutkin, MYu., Ovid’ko, I.A.: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids. Philos. Mag. A 70, 561–575 (1994)

    Article  Google Scholar 

  17. Wu, M.S., Zhou, H.: Analysis of a crack in a disclinated cylinder. Int. J. Fract. 82, 381–399 (1996)

    Article  Google Scholar 

  18. Wu, M.S., Zhou, K., Nazarov, A.A.: Crack nucleation at disclinated triple junctions. Phys. Rev. B 76, 134105 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao S. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M.S. A revisit of the elastic fields of straight disclinations with new solutions for a rigid core. Acta Mech 230, 2505–2520 (2019). https://doi.org/10.1007/s00707-019-02411-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02411-0

Navigation