Skip to main content
Log in

A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menouillard, T., Belytschko, T.: Dynamic fracture with meshfree enriched XFEM. Acta Mech. 213, 53–69 (2008)

    Article  MATH  Google Scholar 

  2. Spieler, C., Kaestner, M., Goldmann, J., Brummund, J., Ulbricht, V.: XFEM modeling and homogenization of magnetoactive composites. Acta Mech. 224, 2453–2469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wu, L., Liu, P., Shi, C., Zhang, Z., Bui, T.Q., Jiao, D.: Edge-based smoothed extended finite element method for dynamic fracture analysis. Appl. Math. Model. 40, 8564–8579 (2016)

    Article  MathSciNet  Google Scholar 

  4. Areias, P., Rabczuk, T., Dias-da-Costa, D.: Element-wise fracture algorithm based on rotation of edges. Eng. Fract. Mech. 110, 113–137 (2013)

    Article  Google Scholar 

  5. Bansal, M., Singh, I.V., Mishra, B.K., Sharma, K., Khan, I.A.: A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations. J. Nucl. Mater. 487, 143–157 (2017)

    Article  Google Scholar 

  6. Singh, S.K., Singh, I.V., Mishra, B.K., Bhardwaj, G., Bui, T.Q.: A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations. Theor. Appl. Fract. Mech. 88, 74–96 (2017)

    Article  Google Scholar 

  7. Agathos, K., Chatzi, E., Bordas, S., Talaslidis, D.: A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. Int. J. Numer. Methods Eng. 9, 643–677 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bordas, S., Duflot, M., Le, P.: A simple error estimator for extended finite elements. Commun. Numer. Methods Eng. 11, 961–971 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 602–620 (1999)

    Article  MATH  Google Scholar 

  10. Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghorashi, S.S., Valizadeh, N., Mohammadi, S., Rabczuk, T.: T-spline based XIGA for fracture analysis of orthotropic media. Comput. Struct. 147, 138–146 (2015)

    Article  Google Scholar 

  12. Patil, R.U., Mishra, B.K., Singh, I.V.: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials. Int. J. Mech. Sci. 122, 277–287 (2017)

    Article  Google Scholar 

  13. Wang, Z., Yu, T.T., Bui, T.Q., Ngoc, Anh T., Nguyen-Thi, H.L., Nguyen-Dinh, D., Duc-Hong, D.: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM. Adv. Eng. Softw. 102, 105–122 (2016)

    Article  Google Scholar 

  14. Feng, S.Z., Li, W.: An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations. Appl. Math. Model. 55, 600–615 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part I: theory and state of the art review. Eng. Fract. Mech. 191, 205–224 (2017)

    Article  Google Scholar 

  16. Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM. Eng. Fract. Mech. 191, 225–256 (2017)

    Article  Google Scholar 

  17. Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng. Fract. Mech. 191, 257–276 (2017)

    Article  Google Scholar 

  18. Wu, S.C., Zhang, W.H., Peng, X., Miao, B.R.: A twice-interpolation finite element method (TFEM) for crack propagation problems. Int. J. Comput. Methods 9, 1250055 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bui, T.Q., Nguyen, D.D., Zhang, X.D., Hirose, S., Batra, R.C.: Analysis of 2-dimensional transient problems for linear elastic and piezoelectric structures using the consecutive-interpolation quadrilateral element (CQ4). Euro. J. Mech. A/Solids 58, 112–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bui, T.Q., Vo, D.Q., Zhang, C.Z., Nguyen, D.D.: A consecutive-interpolation quadrilateral element (CQ4): formulation and applications. Finite Elem. Anal. Des. 84, 14–31 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kang, Z.Y., Bui, T.Q., Nguyen, D.D., Saitoh, T., Hirose, S.: An extended consecutive interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics. Acta Mech. 226, 3991–4015 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, Z.Y., Bui, T.Q., Saitoh, T., Hirose, S.: Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments. Theor. Appl. Fract. Mech. 87, 61–77 (2017)

    Article  Google Scholar 

  23. Kang, Z.Y., Bui, T.Q., Nguyen, D.D., Hirose, S.: Dynamic stationary crack analysis of isotropic solids and anisotropic composites by enhanced local enriched consecutive-interpolation elements. Compos. Struct. 180, 221–233 (2017)

    Article  Google Scholar 

  24. Bui, T.Q., Nguyen, M.N., Nguyen, N.T., Truong, T.T., Lich, L.V.: Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int. J. Mech. Sci. 134, 370–386 (2017)

    Article  Google Scholar 

  25. Yu, T.T., Bui, T.Q.: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement. Comput. Struct. 196, 112–133 (2018)

    Article  Google Scholar 

  26. Wang, Z., Yu, T.T., Bui, T.Q., Tanaka, S., Zhang, C.Z., Hirose, S., Curiel-Sosa, J.L.: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks. Comput. Methods Appl. Mech. Eng. 313, 375–405 (2017)

    Article  MathSciNet  Google Scholar 

  27. Cui, X.Y., Li, Z.C., Feng, H., Feng, S.Z.: Steady and transient heat transfer analysis using a stable node-based smoothed finite element method. Int. J. Therm. Sci. 110, 12–25 (2016)

    Article  Google Scholar 

  28. Hu, X.B., Cui, X.Y., Feng, H., Li, G.Y.: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method. Eng. Anal. Bound. Elem. 70, 40–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Nguyen-Vinh, P., Natarajan, S., Bog, T., Do-Minh, Q., Nguyen-Vinh, H.: Strain smoothing in FEM and XFEM. Comput. Struct. 88, 1419–1443 (2010)

    Article  Google Scholar 

  30. Chen, L., Rabczuk, T., Bordas, S., Liu, G.R., Zeng, K.Y., Kerfriden, P.: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 209, 250–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P., Simpson, R.N.: A node-based smoothed eXtended finite element method (NS-XFEM) for fracture analysis. Comput. Model. Eng. Sci. 73, 331–56 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Brodlie, K.W., Asim, M.R., Unsworth, K.: Constrained visualization using the Shepard interpolation family. Comput. Graph. Forum. 24, 809–820 (2005)

    Article  Google Scholar 

  33. Cui, X.Y., Hu, X., Wang, G., Li, G.Y.: An accurate and efficient scheme for acoustic-structure interaction problems based on unstructured mesh. Comput. Methods Appl. Mech. Eng. 317, 1122–1145 (2017)

    Article  MathSciNet  Google Scholar 

  34. Sih, G.C.: Energy-density concept in fracture mechanics. Eng. Fract. Mech. 5, 1037–1040 (1973)

    Article  Google Scholar 

  35. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  36. Srawley, J.E.: Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int. J. Fract. 12, 475–476 (1976)

    Google Scholar 

  37. Wu, J., Cai, Y.C.: A partition of unity formulation referring to the NMM for multiple intersecting crack analysis. Theor. Appl. Fract. Mech. 72, 28–36 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by State Key Program of National Natural Science of China (11832011), Taishan Scholar project of Shandong Province, National Natural Science Foundation of China (11702080) and the Natural Science Foundation of Hebei Province of China (A2018202205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S.Z., Bordas, S.P.A., Han, X. et al. A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics. Acta Mech 230, 2385–2398 (2019). https://doi.org/10.1007/s00707-019-02386-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02386-y

Navigation