Skip to main content
Log in

Surface effects on an electrically permeable elliptical nano-hole or nano-crack in piezoelectric materials under anti-plane shear

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An electrically permeable elliptical nano-hole or nano-crack embedded in an infinite piezoelectric material with surface effect is investigated based on the Gurtin–Murdoch surface/interface model, which is subjected to far-field anti-plane mechanical and in-plane electrical loads. The electric field inside the elliptical nano-hole has been taken into consideration, and exact electroelastic fields near the elliptical nano-hole are obtained by using the technique of conformal mapping. The size-dependent stress and electric displacement intensity factors at the crack tip are derived exactly for both electrically permeable and impermeable boundary conditions when the elliptical nano-hole reduces to the nano-crack. Numerical examples are illustrated to show the surface effects on the stress and electric displacement intensity factors of electrically permeable and impermeable cracks, and on the stress and electric field concentrations around the electrically permeable and impermeable holes. The results indicate that the size dependence of an electrically permeable nano-hole or nano-crack is entirely different from that of the electrically impermeable case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, R., Qin, Y., Li, C., et al.: Characteristics of output voltage and current of integrated nanogenerators. J. Mech. Phys. Solids 94, 022905 (2009)

    Google Scholar 

  2. Caillier, C., Ayari, A., Gouttenoire, V., et al.: Gold contact to individual metallic carbon nanotubes: A sensitive nanosensor for high-pressure. Appl. Phys. Lett. 97, 173111 (2010)

    Article  Google Scholar 

  3. Khaderbad, M.A., Choi, Y., Hiralal, P., et al.: Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire. Nanotechnology 23, 025501 (2012)

    Article  Google Scholar 

  4. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Sur. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  5. Cammarata, R.C.: Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237, 180–184 (1997)

    Article  Google Scholar 

  6. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  7. Allara, D.L.: A perspective on surfaces and interfaces. Nature 437, 638–639 (2005)

    Article  Google Scholar 

  8. Wong, E., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  9. Poncharal, P., Wang, Z., Ugarte, D., deHeer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  10. Scheludko, A.D., Nikolov, A.D.: Measurement of surface tension by pulling a sphere from a liquid. Colloid Polymer Sci. 253, 396–403 (1975)

    Article  Google Scholar 

  11. Deville, G.: Dynamic measurement of the surface tension of liquid helium with a two-dimensional electron probe. J. Low Temp. Phys. 72, 135–151 (1988)

    Article  Google Scholar 

  12. Vázquez, G., Alvarez, E., Navaza, J.M.: Surface Tension of Alcohol + Water from 20 to 50 \(^{\circ }\)C. J. Chem. Eng. Data 40, 611–614 (1995)

    Article  Google Scholar 

  13. Romero, C.M., Paéz, M.S.: Surface tension of aqueous solutions of alcohol and polyols at 298.15K. Phys. Chem. Liquids 44, 61-65 (2006)

    Article  Google Scholar 

  14. Chang, J., Wang, H.P., Zhou, K., Wei, B.: Surface tension measurement of undercooled liquid Ni-based multicomponent alloys. Phil. Mag. Lett. 92, 428–435 (2012)

    Article  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  16. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  17. Sharma, P., Ganti, S.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  18. Duan, H.L., Wang, J., Huang, Z.P.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  Google Scholar 

  19. Lim, C.W., Li, Z.R., He, L.H.: Size-dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. Int. J. Solids Struct. 43, 5055–5065 (2006)

    Article  Google Scholar 

  20. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nano-scale circular inhomogeneity. J. Appl. Mech. 74, 568–574 (2007)

    Article  Google Scholar 

  21. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nano scale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)

    Article  Google Scholar 

  22. Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A/Solids 28, 926–934 (2009)

    Article  Google Scholar 

  23. Dong, C.Y., Pan, E.: Boundary element analysis of nano inhomogeneities of arbitrary shapes with surface and interface effects. Eng. Anal. Bound. Elem. 35, 996–1002 (2011)

    Article  Google Scholar 

  24. Wang, G.F., Wang, T.J.: Deformation around a nanosized elliptical hole with surface effect. Appl. Phys. Lett. 89, 161901 (2006)

    Article  Google Scholar 

  25. Li, Q., Chen, Y.H.: Surface effect and size dependence on the energy release due to a nanosized hole expansion in plane elastic materials. J. Appl. Mech. 75, 061008 (2008)

    Article  Google Scholar 

  26. Wang, S., Dai, M., Ru, C.Q., Gao, C.F.: Stress field around an arbitrarily shaped nanosized hole with surface tension. Acta Mech. 225, 3453–3462 (2014)

    Article  MathSciNet  Google Scholar 

  27. Grekov, M.A., Yazovskaya, A.A.: The effect of surface elasticity and residual surface stress in an elastic body with an elliptic nanohole. J. Appl. Math. Mech. 78, 172–180 (2014)

    Article  MathSciNet  Google Scholar 

  28. Xu, J.Y., Dong, C.Y.: Surface and interface stress effects on the interaction of nano-inclusions and nano-cracks in an infinite domain under anti-plane shear. Int. J. Mech. Sci. 111–112, 12–23 (2016)

    Article  Google Scholar 

  29. Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  Google Scholar 

  30. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222, 59–67 (2011)

    Article  Google Scholar 

  31. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)

    Article  Google Scholar 

  32. Fang, X.Q., Huang, M.J., Liu, J.X., Nie, G.Q.: Electro-mechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under anti-plane shear. J. Appl. Phys. 115, 064306 (2014)

    Article  Google Scholar 

  33. Fang, X.Q., Huang, M.J., Liu, J.X., Feng, W.J.: Dynamic effective property of piezoelectric composites with coated piezoelectric nano-fibers. Compos. Sci. Tech. 98, 79–85 (2014)

    Article  Google Scholar 

  34. Fang, X.Q., Huang, M.J., Zhu, Z.T., Liu, J.X.: Surface free energy effect on electromechanical behavior of piezoelectric thin film with square nanofibers under antiplane shear. Acta Mech. 226, 149–156 (2015)

    Article  MathSciNet  Google Scholar 

  35. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Generalized self-consistent electroelastic estimation of piezoelectric nanocomposites accounting for fiber section shape under antiplane shear. Acta Mech. 227, 1381–1392 (2016)

    Article  MathSciNet  Google Scholar 

  36. Fang, X.Q., Zhu, C.S.: Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory. Compos. Struct. 160, 1191–1197 (2017)

    Article  Google Scholar 

  37. Zhu, C.S., Fang, X.Q., Liu, J.X., Li, H.Y.: Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur. J. Mech. A/Solids 66, 423–432 (2017)

    Article  MathSciNet  Google Scholar 

  38. Fang, X.Q., Gupta, V., Liu, J.X.: Effect of couple stress at the interfaces of a nanohole on the anti-plane electro-mechanical behavior. Phil. Mag. Lett. 93, 58–67 (2013)

    Article  Google Scholar 

  39. Nan, H.S., Wang, B.L.: Nanoscale anti-plane cracking of materials with consideration of bulk and surface piezoelectricity effects. Acta Mech. 227, 1445–1452 (2016)

    Article  Google Scholar 

  40. Chiang, C.R., Weng, G.J.: The nature of stress and electric displacement concentration around a strongly oblate cavity in a transversely isotropic piezoelectric material. Int. J. Fract. 134, 319–337 (2005)

    Article  Google Scholar 

  41. Chiang, C.R., Weng, G.J.: Nonlinear behavior and critical state of a penny-shaped dielectric crack in a piezoelectric solid. ASME J. Appl. Mech. 74, 852–860 (2007)

    Article  Google Scholar 

  42. Xiao, J.H., Xu, Y.L., Zhang, F.C.: A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM Z Angew. Math. Mech. 96, 633–641 (2016)

    Article  MathSciNet  Google Scholar 

  43. Kuna, M.: Fracture mechanics of piezoelectric materials-Where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)

    Article  Google Scholar 

  44. Pak, Y.E.: Elliptical inclusion problem in antiplane piezoelectricity: implications for fracture mechanics. Int. J. Eng. Sci. 48, 209–222 (2010)

    Article  Google Scholar 

  45. Mishra, D., Park, C.Y., Yoo, S.H., Pak, Y.E.: Closed-form solution for elliptical inclusion problem in antiplane piezoelectricity with far-field loading at an arbitrary angle. Eur. J. Mech. A. Solids 40, 186–197 (2013)

    Article  MathSciNet  Google Scholar 

  46. Wang, G.F., Feng, X.Q., Yu, S.W., Nan, C.W.: Interface effects on effective elastic moduli of nanocrystalline materials. Mater. Sci. Eng. A 363, 1–8 (2003)

    Article  Google Scholar 

  47. Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. Chin. -Phys. Mech. Astron. 54, 564–573 (2011)

    Article  Google Scholar 

  48. Chen, T.Y., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  49. Zhang, T.Y., Tong, P.: Fracture mechanics for a mode III crack in a piezoelectric material. Int. J. Solids Struct. 33, 343–359 (1996)

    Article  Google Scholar 

  50. Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41, 339–379 (2004)

    Article  Google Scholar 

  51. Pak, Y.E.: Circular inclusion problem in antiplane piezoelectricity. Int. J. Solids Struct. 29, 2403–2419 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11502123, 11262012) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2015JQ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Li, X. Surface effects on an electrically permeable elliptical nano-hole or nano-crack in piezoelectric materials under anti-plane shear. Acta Mech 229, 4251–4266 (2018). https://doi.org/10.1007/s00707-018-2232-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2232-1

Navigation