Skip to main content
Log in

Modeling droplet deformation through converging–diverging microchannels at low Reynolds number

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the deformation of a droplet flowing through planar diverging and converging channels connected by a narrow straight microchannel is studied numerically. The solution of the depth-averaged Brinkman equation is obtained numerically via a self-consistent integral equation using the boundary element method. The droplet experiences a converging/diverging radial flow field as it flows in/out of the straight channel. Therefore, droplet deformation strongly depends on channel diverging angle. Our numerical results indicate that the maximum deformation of the droplet depends on the droplet size and the modified capillary number, and the channel diverging angle can be scaled with power laws with exponents 3.00, 0.70, and 0.50, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen, N.T., Wereley, S.: Fundamentals and Applications of Microfluidics. Artech House, Boston (2002)

    MATH  Google Scholar 

  2. Bremond, N., Thiam, A.R., Bibette, J.: Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 100, 024501 (2008)

    Article  Google Scholar 

  3. Baret, J.C., Taly, V., Ryckelynck, M., Merten, C.A., Griffiths, A.D.: Droplets and emulsions: very high-throughput screening in biology. Med. Sci. 25, 627 (2009)

    Google Scholar 

  4. Kadivar, E.: Magnetocoalescence of ferrofluid droplets in a flat microfluidic channel. EPL (Europhys. Lett.) 106, 24003 (2014)

    Article  Google Scholar 

  5. Link, D.R., Anna, S.L., Weitz, D.A., Stone, H.A.: Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004)

    Article  Google Scholar 

  6. Salkin, L., Schmit, A., Courbin, L., Panizza, P.: Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models. Lab Chip 13, 3022 (2013)

    Article  Google Scholar 

  7. Christopher, G.F., Noharuddin, N.N., Taylor, J.A., Anna, S.L.: Experimental observation of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78, 036317 (2008)

    Article  Google Scholar 

  8. De Menech, M., Garstecki, P., Jousse, F., Stone, H.A.: Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595, 141 (2008)

    Article  Google Scholar 

  9. Taylor, G.: The viscosity of a fluid containing small drops of another fluid. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 138, p. 41 (1932)

    Article  Google Scholar 

  10. Taylor, G.: The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. A 146, 501 (1934)

    Article  Google Scholar 

  11. Sibillo, V., Pasquariello, G., Simeone, M., Cristini, V., Guido, S.: Drop deformation in microconfined shear flow. Phys. Rev. Lett. 97, 054502 (2006)

    Article  Google Scholar 

  12. Mietus, W.G.P., Matar, O.K., Lawrence, C.J., Briscoe, B.J.: Droplet deformation in confined shear and extensional flow. Chem. Eng. Sci. 57, 1217 (2002)

    Article  Google Scholar 

  13. Bentley, B., Leal, L.: An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 167, 241 (1986)

    Article  Google Scholar 

  14. Brosseau, Q., Vrignon, J., Baret, J.-C.: Microfluidic dynamic interfacial tensiometry. Soft Matter 10, 3066–3076 (2014)

    Article  Google Scholar 

  15. Kadivar, E., Farrokhbin, M.: A numerical procedure for scaling droplet deformation in a microfluidic expansion channel. Physica A 479, 449 (2017)

    Article  MathSciNet  Google Scholar 

  16. Oliveira, M.S.N., Alves, M.A., Pinho, F.T., McKinley, G.H.: Viscous flow through microfabricated hyperbolic contractions. Exp. Fluids 43, 437 (2007)

    Article  Google Scholar 

  17. Ulloa, C., Ahumada, A., Cordero, M.L.: Effect of confinement on the deformation of microfluidic drops. Phys. Rev. E 89, 033004 (2014)

    Article  Google Scholar 

  18. Kadivar, E., Alizadeh, A.: Numerical simulation and scaling of droplet deformation in a hyperbolic flow. Eur. Phys. J. E 40, 31 (2017)

    Article  Google Scholar 

  19. Cogswell, F.N.: Measuring the extensional rheology of polymer melts. Trans. Soc. Rheol. 16, 383 (1972)

    Article  Google Scholar 

  20. Cogswell, F.N.: Converging flow and stretching flow: a compilation. J. Non Newton. Fluid Mech. 4, 23 (1978)

    Article  Google Scholar 

  21. James, D.F.: Flow in a converging channel at moderate Reynolds number. AIChE J 37, 59 (1991)

    Article  Google Scholar 

  22. Duryodhan, V.S., Singh, S.G., Agrawal, A.: Liquid flow through converging microchannels and a comparison with diverging microchannels. J. Micromech. Microeng. 24, 125002 (2014)

    Article  Google Scholar 

  23. Duryodhan, V.S., Singh, S.G., Agrawal, A.: Effect of cross aspect ratio on flow in diverging and converging microchannel. J. Fluids Eng. 139, 061203 (2017)

    Article  Google Scholar 

  24. Zografos, K., Pimenta, F., Alves, M.A., Oliveira, M.S.N.: Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics 10, 043508 (2016)

    Article  Google Scholar 

  25. Lettieri, G.L., Dodge, A., Boer, G., de Rooij, N.F., Verpoorte, E.: A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lab Chip 3, 34 (2003)

    Article  Google Scholar 

  26. Xuan, X., Li, D.: Particle motions in low-Reynolds number pressure-driven flows through convergingdiverging microchannels. J. Micromech. Microeng. 16, 62 (2006)

    Article  Google Scholar 

  27. Khayat, R.E., Luciani, A., Utracki, L.A., Godbille, F., Picot, J.: Influence of shear and elongation on drop deformation in convergent–divergent flows. Int. J. Multiph. Flow 26, 17 (2000)

    Article  Google Scholar 

  28. Cunha, L.H.P., Siqueira, I.R., Albuquerque, E.L., Oliveira, T.F.: Flow of emulsion drops through a constricted microcapillary channel. Int. J. Multiph. Flow 103, 141 (2018)

    Article  MathSciNet  Google Scholar 

  29. Gallaire, F., Meliga, P., Laure, P., Baroud, C.N.: Marangoni induced force on a drop in a Hele Shaw cell. Phys. Fluids 26, 062105 (2014)

    Article  Google Scholar 

  30. Park, C.W., Homsy, M.: Two-phase displacement in hele shaw cells: theory. J. Fluid Mech. 139, 291 (1984)

    Article  Google Scholar 

  31. Pozrikidis, C.: A Practical Guide to Boundary Element Methods. CRC Press, Florida (2002)

    MATH  Google Scholar 

  32. Kadivar, E., Herminghaus, S., Brinkmann, M.: Droplet sorting in a loop of flat microfluidic channels. J. Phys. Condens. Matter 25, 285102 (2013)

    Article  Google Scholar 

  33. Langlois, U.E., Deville, M.O.: Slow Viscous Flow. Springer International Publishing, Switzerland (2014)

    Book  Google Scholar 

  34. Rallison, J.M.: The deformation of small viscous drops and bubbles in shear flows. Ann. Rev. Fluid Mech. 16, 45 (1984)

    Article  Google Scholar 

  35. Cabral, J.T., Hudson, S.D.: Microfluidic approach for rapid multicomponent interfacial tensiometry. Lab Chip 6, 427 (2006)

    Article  Google Scholar 

  36. Ratulowski, J., Chang, H.-C.: Transport of gas bubbles in capillaries. Phys. Fluids A 1(10), 1642 (1989)

    Article  MathSciNet  Google Scholar 

  37. Cubaud, T.: Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows. Phys. Rev. E 80, 026307 (2009)

    Article  Google Scholar 

  38. Shapira, M., Haber, S.: Low Reynolds number motion of a droplet in shear flow including wall effects. Int. J. Multiphase Flow 16, 305 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Kadivar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (gif 162 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadivar, E. Modeling droplet deformation through converging–diverging microchannels at low Reynolds number. Acta Mech 229, 4239–4250 (2018). https://doi.org/10.1007/s00707-018-2225-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2225-0

Navigation