Skip to main content
Log in

Nonlinear diffusion in arterial tissues: a free boundary problem

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A free boundary problem on a finite interval is formulated and solved for a nonlinear diffusion–convection equation. The model is suitable to describe drug diffusion in arterial tissues after the drug is released by an arterial stent. The problem is reduced to a system of nonlinear integral equations, admitting a unique solution for small time. The existence of an exact solution corresponding to a moving front is also shown, which is in agreement with numerical results existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McGinty, S.: A decade of modelling drug release from arterial stents. Math. Biosci. 257, 80–90 (2014)

    Article  MathSciNet  Google Scholar 

  2. Hossainy, S., Prabhu, S.: A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J. Biomed. Mater. Res. A 87, 487–493 (2008)

    Article  Google Scholar 

  3. McGinty, S., Pontrelli, G.: A general model of coupled drug release and tissue absorption for drug delivery devices. J. Control. Release 217, 327–336 (2015)

    Article  Google Scholar 

  4. Pontrelli, G., de Monte, F.: Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int. J. Heat Mass Transf. 50, 3658–3669 (2007)

    Article  Google Scholar 

  5. Hwang, C.W., Wu, D., Edelman, E.R.: Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104, 600–605 (2001)

    Article  Google Scholar 

  6. Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  7. Elliot, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems, vol. 59. Pitman Publishing, New York (1982)

    Google Scholar 

  8. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  9. Rosen, G.: Method for the exact solution of a nonlinear diffusion–convection equation. Phys. Rev. Lett. 49, 1844 (1982)

    Article  MathSciNet  Google Scholar 

  10. Fokas, A.S., Yortsos, Y.C.: On the exactly solvable equation \(S_{t}=\left[\left(\beta S+\gamma \right)^{-2}S_{x}\right]_{x}+\alpha \left(\beta S+\gamma \right)^{-2}S_{x}\) occurring in two-phase flow in porous media. SIAM J. Appl. Math. 42, 318 (1982)

    Article  MathSciNet  Google Scholar 

  11. Fokas, A.S., Pelloni, B.: Generalized Dirichlet to Neumann map for moving initial-boundary value problems. J. Math. Phys. 48, 013502 (2007)

    Article  MathSciNet  Google Scholar 

  12. De Lillo, S., Fokas, A.S.: The Dirichlet-to-Neumann map for the heat equation on a moving boundary. Inverse Probl. 23, 1699–1710 (2007)

    Article  MathSciNet  Google Scholar 

  13. Fokas, A.S., De Lillo, S.: The unified transform for linear, linearizable and integrable nonlinear partial differential equations. Phys. Scr. 89, 1–10 (2014)

    Article  Google Scholar 

  14. Rogers, C.: Application of a reciprocal transformation to a two-phase Stefan problem. J. Phys. A Math. Gen. 18, L 105 (1985)

    Article  MathSciNet  Google Scholar 

  15. Rogers, C.: On a class of moving boundary problems in non-linear heat conduction: application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  Google Scholar 

  16. Friedman, A.: Free boundary problems in science and technology. Not. AMS 47, 854–861 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Ablowitz, M.J., De Lillo, S.: On a Burgers–Stefan problem. Nonlinearity 13, 471–478 (2000)

    Article  MathSciNet  Google Scholar 

  18. Kingston, J.G., Rogers, C.: Reciprocal Bäcklund transformations of conservation laws. Phys. Lett. A 92, 261–264 (1982)

    Article  MathSciNet  Google Scholar 

  19. Fokas, A.S., Rogers, C., Schief, W.K.: Evolution of methacrylate distribution during wood saturation. Appl. Math. Lett. 18, 321–328 (2005)

    Article  MathSciNet  Google Scholar 

  20. De Lillo, S., Salvatori, M.C., Sanchini, G.: On a free boundary problem in a nonlinear diffusive–convective system. Phys. Lett. A 310, 25–29 (2003)

    Article  MathSciNet  Google Scholar 

  21. De Lillo, S., Lupo, G.: A two-phase free boundary problem for a nonlinear diffusion–convection equation. J. Phys. A Math. Theor. 41, 145207 (2008)

    Article  MathSciNet  Google Scholar 

  22. Burini, D., De Lillo, S.: An inverse problem for a nonlinear diffusion–convection equation. Acta Appl. Math. 122, 69–74 (2012)

    Article  MathSciNet  Google Scholar 

  23. Calogero, F., De Lillo, S.: The Burgers equation on the semi-infinite and finite intervals. Nonlinearity 2, 37–43 (1989)

    Article  MathSciNet  Google Scholar 

  24. Burini, D., De Lillo, S.: Nonlinear heat diffusion under impulsive forcing. Math. Comput. Model. 55, 269–277 (2012)

    Article  MathSciNet  Google Scholar 

  25. Friedman, A.: Partial Differential Equations of Parabolic Type, Chap. 8. Prentice Hall, Englewood Cliffs (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diletta Burini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burini, D., De Lillo, S. & Fioriti, G. Nonlinear diffusion in arterial tissues: a free boundary problem. Acta Mech 229, 4215–4228 (2018). https://doi.org/10.1007/s00707-018-2220-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2220-5

Navigation