Skip to main content
Log in

Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The elastic buckling of square and skew thin functionally graded material (FGM) plates with cutout resting on an elastic foundation is investigated using the isoparametric spline finite strip method. It is assumed that the material properties of FGM plates vary smoothly through the thickness according to the power law model. The elastic foundation is simulated by the Winkler and two-parameter Pasternak models. The isoparametric spline finite strip method is also applied to investigate initial inelastic local buckling loads of skew homogenous plates with cutout based on the Ramberg–Osgood representation of the stress–strain curve using the deformation theory of plasticity. The critical buckling load of the plate is achieved by minimizing its total potential energy and solving the corresponding eigenvalue problem. In addition, the effects of elastic foundation coefficients and hole size on the local buckling of plates with different boundary conditions are determined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J., Shen, H.-S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)

    Article  Google Scholar 

  2. Foroughi, H., Azhari, M.: Mechanical buckling and free vibration of thick functionally graded plates resting on elastic foundation using the higher order B-spline finite strip method. Meccanica 49, 981–993 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Javaheri, R., Eslami, M.: Thermal buckling of functionally graded plates based on higher order theory. J. Therm. Stress. 25, 603–625 (2002)

    Article  Google Scholar 

  4. Najafizadeh, M., Heydari, H.: Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. Eur. J. Mech. A Solid 23, 1085–1100 (2004)

    Article  MATH  Google Scholar 

  5. Ninh, D.G., Bich, D.H., Kien, B.H.: Torsional buckling and post-buckling behavior of eccentrically stiffened functionally graded toroidal shell segments surrounded by an elastic medium. Acta Mech. 226, 3501–3519 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adineh, M., Kadkhodayan, M.: Three-dimensional thermo-elastic analysis of multi-directional functionally graded rectangular plates on elastic foundation. Acta Mech. 228, 881–899 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bijlaard, P.: Theory and tests on the plastic stability of plates and shells. J. Aeronaut. Sci. 16, 529–541 (1949)

    Article  MathSciNet  Google Scholar 

  8. Illyushin, A.: The elastic plastic stability of plates. Tech. Note, NACA–1188 (1947)

  9. Stowell, E.Z.: A Unified Theory of Plastic Buckling of Columns and Plates. NACA–1556 (1948)

  10. Handelman, G.H., Prager, W.: Plastic Buckling of a Rectangular Plate Under Edge Thrusts. NACA–1530 (1948)

  11. Pearson, C.E.: Bifurcation criterion and plastic buckling of plates and columns. J. Aeronaut. Sci. 7, 417–424 (1950)

    Article  MathSciNet  Google Scholar 

  12. Mendelson, A.: Plasticity, Theory and Application. In: Landis, F. (ed.) Series in applied mechanics. Macmillan, New York (1968)

  13. Azhari, M., Bradford, M.A.: Inelastic initial local buckling of plates with and without residual stresses. Eng. Struct. 15, 31–39 (1993)

    Article  Google Scholar 

  14. Xu, T., Xing, Y.: Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation. Acta Mech. Sin. 32, 1088–1103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Su, Z., Jin, G., Wang, Y., Ye, X.: A general Fourier formulation for vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations. Acta Mech. 227, 1493–1514 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zenkour, A.M., Allam, M.N., Sobhy, M.: Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternaks elastic foundations. Acta Mech. 212, 233–252 (2010)

    Article  MATH  Google Scholar 

  17. Foroughi, H., Askariyeh, H., Azhari, M.: Mechanical buckling of thick composite plates reinforced with randomly oriented, straight, single-walled carbon nanotubes resting on an elastic foundation using the finite strip method. J. Nanomech. Micromech. 3, 49–58 (2013)

    Article  Google Scholar 

  18. Winkler, E.: Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik für polytechnische Schulen, Bauakademien, Ingenieue, Maschinenbauer, Architecten, etc. Dominicus (1867)

  19. Pasternak, P.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow (1954)

    Google Scholar 

  20. Cheung, Y.-K.: Finite strip method analysis of elastic slabs. J. Eng. Mech. 94, 1365–1378 (1968)

    Google Scholar 

  21. Fan S, Cheung Y.: Static analysis of right box girder bridges by spline finite strip method. In: Proceedings of Institution of Civil Engineering PT2 (1983)

  22. Fan, S., Cheung, Y.: Flexural free vibrations of rectangular plates with complex support conditions. J. Sound Vib. 93, 81–94 (1984)

    Article  Google Scholar 

  23. Au, F., Cheung, Y.: Isoparametric spline finite strip for plane structures. Comput. Struct. 48, 23–32 (1993)

    Article  MATH  Google Scholar 

  24. Shanmugam, N.E., Thevendran, V., Tan, Y.: Design formula for axially compressed perforated plates. Thin Wall Struct. 34, 1–20 (1999)

    Article  Google Scholar 

  25. Saadatpour, M., Azhari, M., Bradford, M.: Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method. Comput. Methods Appl. Mech. Eng. 164, 297–306 (1998)

    Article  MATH  Google Scholar 

  26. Lotfi, S., Azhari, M., Heidarpour, A.: Inelastic initial local buckling of skew thin thickness-tapered plates with and without intermediate supports using the isoparametric spline finite strip method. Thin Wall Struct. 49, 1475–1482 (2011)

    Article  Google Scholar 

  27. Chakravorty, A., Ghosh, A.: Finite difference solution for circular plates on elastic foundations. Int. J. Numer. Methods Eng. 9, 73–84 (1975)

    Article  MATH  Google Scholar 

  28. Kennedy, J., Prabhakara, M.: Buckling of simply supported orthotropic skew plates. Aeronaut Q. 29, 161–174 (1978)

    Article  Google Scholar 

  29. Brown, C.J., Yettram, A.L.: The elastic stability of square perforated plates under combinations of bending, shear and direct load. Thin Wall Struct. 4, 239–246 (1986)

    Article  Google Scholar 

  30. Eccher, G., Rasmussen, K., Zandonini, R.: Elastic buckling analysis of perforated thin-walled structures by the isoparametric spline finite strip method. Thin Wall Struct. 46, 165–191 (2008)

    Article  MATH  Google Scholar 

  31. Ovesy, H., Fazilati, J.: Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches. Compos. Struct. 94, 1250–1258 (2012)

    Article  Google Scholar 

  32. Azhari, M., Shahidi, A., Saadatpour, M.: Local and post local buckling of stepped and perforated thin plates. Appl. Math. Model. 29, 633–652 (2005)

    Article  MATH  Google Scholar 

  33. Pifko, A., Isakson, G.: A finite-element method for the plastic buckling analysis of plates. AIAA. J. 7, 1950–1957 (1969)

    Article  MATH  Google Scholar 

  34. Lam, K., Wang, C., He, X.: Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions. Eng. Struct. 22, 364–378 (2000)

    Article  Google Scholar 

  35. Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A., Vahabi, S.: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: buckling analysis. Comput. Mater. Sci. 44, 968–978 (2009)

    Article  Google Scholar 

  36. Zhao, X., Lee, Y., Liew, K.M.: Mechanical and thermal buckling analysis of functionally graded plates. Compos. Struct. 90, 161–171 (2009)

    Article  Google Scholar 

  37. Cheung, Y., Kong, J.: Linear elastic stability analysis of shear-deformable plates using a modified spline finite strip method. Comput. Struct. 47, 189–192 (1993)

    Article  Google Scholar 

  38. Tham, L., Chan, A., Cheung, Y.: Free vibration and buckling analysis of plates by the negative stiffness method. Comput. Struct. 22, 687–692 (1986)

    Article  Google Scholar 

  39. Kitipornchai, S., Xiang, Y., Wang, C., Liew, K.: Buckling of thick skew plates. Int. J. Numer. Methods Eng. 36, 1299–1310 (1993)

    Article  MATH  Google Scholar 

  40. Jaberzadeh, E., Azhari, M., Boroomand, B.: Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free Galerkin method. Appl. Math. Model. 37, 6838–6854 (2013)

    Article  MathSciNet  Google Scholar 

  41. Jaunky, N., Knight, N., Ambur, D.: Buckling of arbitrary quadrilateral anisotropic plates. AIAA. J. 33, 938–944 (1995)

    Article  MATH  Google Scholar 

  42. Mizusawa, T., Kajita, T., Naruoka, M.: Analysis of skew plate problems with various constraints. J. Sound Vib. 73, 575–584 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Foroughi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrestani, M.G., Azhari, M. & Foroughi, H. Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method. Acta Mech 229, 2079–2096 (2018). https://doi.org/10.1007/s00707-017-2082-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2082-2

Navigation