Skip to main content
Log in

Coupled bending–torsional frequency response of beams with attachments: exact solutions including warping effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the coupled bending–torsional vibrations of beams carrying an arbitrary number of viscoelastic dampers and attached masses. Exact closed analytical expressions are derived for the frequency response under harmonically varying, arbitrarily placed polynomial loads, making use of coupled bending–torsion theory including warping effects and taking advantage of generalized functions to model response discontinuities at the application points of dampers/masses. In this context, the exact dynamic Green’s functions of the beam are also obtained. The frequency response solutions are the basis to derive the exact dynamic stiffness matrix and load vector of a two-node coupled bending–torsional beam finite element with warping effects, which may include any number of dampers/masses. Remarkably, the size of the dynamic stiffness matrix and load vector is \(8\times 8\) and \(8\times 1\), respectively, regardless of the number of dampers/masses and loads along the beam finite element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friberg, P.O.: Coupled vibrations of beams—an exact dynamic element stiffness matrix. Int. J. Numer. Methods Eng. 19, 479–493 (1983)

    Article  MATH  Google Scholar 

  2. Dokumaci, E.: An exact solution for coupled bending and torsion vibrations of uniform beam having single cross-sectional symmetry. J. Sound Vib. 119(3), 443–449 (1987)

    Article  MathSciNet  Google Scholar 

  3. Hallauer, W.L., Liu, R.Y.L.: Beam bending–torsion dynamic stiffness method for calculation of exact vibrations modes. J. Sound Vib. 85(1), 105–113 (1982)

    Article  MATH  Google Scholar 

  4. Banerjee, J.R.: Coupled bending–torsional dynamic stiffness matrix for beam elements. Int. J. Numer. Methods Eng. 28, 1283–1298 (1989)

    Article  MATH  Google Scholar 

  5. Eslimy-Isfahany, S.H.R., Banerjee, J.R., Sobey, A.J.: Response of a bending–torsion coupled beam to deterministic and random loads. J. Sound Vib. 195(2), 267–283 (1996)

    Article  Google Scholar 

  6. Han, H., Cao, D., Liu, L.: Green’s functions for forced vibration analysis of bending–torsion coupled Timoshenko beam. Appl. Math. Model. 45, 621–635 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hashemi, S.M., Richard, M.J.: A Dynamic Finite Element (DFE) method for free vibrations of bending–torsion coupled beams. Aerosp. Sci. Technol. 4, 41–55 (2000)

    Article  MATH  Google Scholar 

  8. Jun, L., Wanyou, L., Rongying, S., Hongxing, H.: Coupled bending and torsional vibration of nonsymmetrical axially loaded thin-walled Bernoulli–Euler beams. Mech. Res. Commun. 31, 697–711 (2004)

    Article  MATH  Google Scholar 

  9. Jun, L., Rongying, S., Hongxing, H., Xianding, J.: Coupled bending and torsional vibration of axially loaded thin walled Timoshenko beams. Int. J. Mech. Sci. 46, 229–320 (2004)

    MATH  Google Scholar 

  10. Timoshenko, S., Young, D.H., Weaver, W.J.R.: Vibrations Problems in Engineering. Wiley, New York (1974)

    Google Scholar 

  11. Bishop, R.E.D., Cannon, S.M., Miao, S.: On coupled bending and torsional vibration of uniform beams. J. Sound Vib. 131, 457–464 (1989)

    Article  MATH  Google Scholar 

  12. Bercin, A.N., Tanaka, M.: Coupled flexural–torsional vibrations of Timoshenko beams. J. Sound Vib. 207(1), 47–59 (1997)

    Article  MATH  Google Scholar 

  13. Tanaka, M., Bercin, A.N.: Finite element modeling of the coupled bending and torsional free vibration of uniform beams with an arbitrary cross-section. Appl. Math. Model. 21(6), 339–344 (1997)

    Article  MATH  Google Scholar 

  14. Banerjee, J.R., Guo, S., Howson, W.P.: Exact dynamic stiffness matrix of a bending–torsion coupled beam including warping. Comput. Struct. 59, 613–621 (1996)

    Article  MATH  Google Scholar 

  15. Adam, C.: Forced vibrations of elastic bending–torsion coupled beams. J. Sound Vib. 221(2), 273–287 (1999)

    Article  Google Scholar 

  16. Sapountzakis, E.J., Mokos, V.G.: Dynamic analysis of 3-D beam elements including warping and shear deformation effects. Int. J. Solids Struct. 43, 6707–6726 (2006)

    Article  MATH  Google Scholar 

  17. Sapountzakis, E.J., Tsiatas, G.C.: Flexural–torsional vibrations of beams by BEM. Comput. Mech. 39, 409–417 (2007)

    Article  MATH  Google Scholar 

  18. Sapountzakis, E.J., Dourakopoulos, J.A.: Shear deformation effect in flexural–torsional vibrations of beams by BEM. Acta Mech. 203, 197–221 (2009)

    Article  MATH  Google Scholar 

  19. Oguamanam, D.C.D.: Free vibration of beams with finite mass rigid tip load and flexural–torsional coupling. Int. J. Mech. Sci. 45, 963–979 (2003)

    Article  MATH  Google Scholar 

  20. Gokdag, H., Kopmaz, O.: Coupled bending and torsional vibration of a beam with in span and tip attachments. J. Sound Vib. 287, 591–610 (2005)

    Article  Google Scholar 

  21. Cha, P.D.: Natural frequencies of a linear elastica carrying any number of spring masses. J. Sound Vib. 247(1), 185–194 (2001)

    Article  Google Scholar 

  22. Gurgoze, M.: On the eigenfrequencies of a cantilevered beam, with a tip mass and in-span support. Comput. Struct. 1, 85–92 (1995)

    Article  MATH  Google Scholar 

  23. Wu, J.S., Chen, D.W.: Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique. Int. J. Numer. Methods Eng. 50(5), 1039–1058 (2001)

    Article  MATH  Google Scholar 

  24. Banerjee, J.R.: Free vibration of beams carrying spring-mass-systems—a dynamic stiffness approach. Comput. Struct. 104, 21–26 (2012)

    Article  Google Scholar 

  25. Yavari, A., Sarkani, S.: On applications of generalized functions to the analysis of Euler–Bernoulli beam-columns with jump discontinuities. Int. J. Mech. Sci. 43, 1543–1562 (2001)

    Article  MATH  Google Scholar 

  26. Wang, J., Qiao, P.: Vibration of beams with arbitrary discontinuities and boundary condition. J. Sound Vib. 308, 12–27 (2007)

    Article  Google Scholar 

  27. Burlon, A., Failla, G., Arena, F.: Exact frequency response analysis of axially loaded beams with viscoelastic dampers. Int. J. Mech. Sci. 115–116, 370–384 (2016)

    Article  Google Scholar 

  28. Failla, G.: An exact generalised function approach to frequency response analysis of beams and plane frames with the inclusion of viscoelastic damping. J. Sound Vib. 360, 171–202 (2016)

    Article  Google Scholar 

  29. Falsone, G.: The use of generalised functions in the discontinuous beam bending differential equation. Int. J. Eng. Educ. 18(3), 337–343 (2002)

    Google Scholar 

  30. Palmeri, A., Cicirello, A.: Physically-based Dirac’s delta functions in the static analysis of multi-cracked Euler–Bernoulli and Timoshenko beams. Int. J. Solids Struct. 48(14–15), 2184–2195 (2011)

    Article  Google Scholar 

  31. Biondi, B., Caddemi, S.: Euler–Bernoulli beams with multiple singularities in the flexural stiffness. Eur. J. Mech. A Solids 26, 789–809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mathematica. Version 8.0, Wolfram Research Inc., Champaign

  33. Trahair, N.S., Bradford, M.A., Nethercot, D.A.: The Behaviour and Design of Steel Structures to EC3, 4th edn. Taylor and Francis, New York (2008)

    Google Scholar 

  34. Gorenc, B.E., Tinyou, R., Syam, A.A.: Steel Designers’ Handbook, 7th edn. UNSW Pres, Sydney (2005)

    Google Scholar 

  35. Gurgoze, M., Erol, H.: On the frequency response function of a damped cantilever simply supported in-span and carrying a tip mass. J. Sound Vib. 255(3), 489–500 (2002)

    Article  Google Scholar 

  36. Brandt, A.: Noise and Vibration Analysis: Signal Analysis and Experimental Procedures. Wiley, Chichester (2011)

    Book  Google Scholar 

  37. Zhao, X., Zhao, Y.R., Gao, X.Z., Li, X.Y., Li, Y.H.: Green’s functions for the forced vibrations of cracked Euler–Bernoulli beams. Mech. Syst. Signal Process. 68–69, 155–175 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Burlon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlon, A., Failla, G. & Arena, F. Coupled bending–torsional frequency response of beams with attachments: exact solutions including warping effects. Acta Mech 229, 2445–2475 (2018). https://doi.org/10.1007/s00707-017-2078-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2078-y

Navigation