Skip to main content
Log in

Inelastic anisotropic constitutive models based on evolutionary linear transformations on stress tensors with application to masonry

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The formulation of constitutive models for anisotropic materials such as masonry is a problem of large complexity. One possible way is to define linear transformations on the stress tensors using fourth-order transformation tensors that carry all the anisotropic information of the material. In the present paper, a new type of evolutionary linear transformation tensor is defined, which can change the values of its components along with the evolution of internal variables. This means the transformation laws are defined according to the current plastic and damage levels, and allows the constitutive model to describe totally different hardening and softening behaviours of the material along different directions. First, a general procedure of formulation of anisotropic constitutive models is given. Second, as a specific example, an orthotropic plastic–damage constitutive model for masonry is presented. Finally, the proposed constitutive model is validated by comparing finite element results with experimental ones pertaining to simple masonry structures under static and cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomazevic, M.: Earthquake-Resistant Design of Masonry Buildings. Imperial College Press, London (1999)

    Book  Google Scholar 

  2. Roca, P., Cervera, M., Gariup, G., Pela, L.: Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch. Comput. Methods Eng. 17(3), 299–325 (2010)

    Article  MATH  Google Scholar 

  3. Theodossopoulos, D., Sinha, B.: A review of analytical methods in the current design processes and assessment of performance of masonry structures. Constr. Build. Mater. 41, 990–1001 (2013)

    Article  Google Scholar 

  4. Lourenço, P.B.: Computational strategies for masonry structures. Ph.D. thesis, Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands (1996)

  5. Lotfi, H.R., Shing, P.B.: Interface model applied to fracture of masonry structures. J. Struct. Eng. ASCE 120(1), 63–80 (1994)

    Article  Google Scholar 

  6. Tzamtzis, A.: Dynamic finite element analysis of complex discontinuous and jointed structural systems using interface elements. Ph.D. thesis, Department of Civil Engineering, Queen Mary University of London, UK (1994)

  7. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthq. Eng. Struct. Dyn. 26(4), 423–439 (1997)

    Article  Google Scholar 

  8. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part II: the continuum model and its applications. Earthq. Eng. Struct. Dyn. 26(4), 441–462 (1997)

    Article  Google Scholar 

  9. Lourenço, P.B., Rots, J.G.: Multisurface interface model for analysis of masonry structures. J. Eng. Mech. ASCE 123(7), 660–668 (1997)

    Article  Google Scholar 

  10. Sutcliffe, D., Yu, H., Page, A.: Lower bound limit analysis of unreinforced masonry shear walls. Comput. Struct. 79(14), 1295–1312 (2001)

    Article  Google Scholar 

  11. Cervera, M., Oliver, J., Manzoli, O.: A rate-dependent isotropic damage model for the seismic analysis of concrete dams. Earthq. Eng. Struct. Dyn. 25(9), 987–1010 (1996)

    Article  Google Scholar 

  12. Faria, R., Oliver, J., Cervera, M.: A strain-based plastic viscous-damage model for massive concrete structures. Int. J. Solids Struct. 35(14), 1533–1558 (1998)

    Article  MATH  Google Scholar 

  13. Hatzigeorgiou, G.D., Beskos, D.E.: Static analysis of 3-D damaged solids and structures by BEM. Eng. Anal. Bound. Elem. 26(6), 521–526 (2002)

    Article  MATH  Google Scholar 

  14. Hatzigeorgiou, G.D., Beskos, D.E.: Dynamic inelastic structural analysis by the BEM: a review. Eng. Anal. Bound. Elem. 35(2), 159–169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Voyiadjis, G.Z., Kattan, P.I.: Mechanics of damage processes in series and in parallel: a conceptual framework. Acta Mech. 223, 1863–1878 (2012)

    Article  MATH  Google Scholar 

  16. Baratta, A., Corbi, H., Corbi, O.: Theorems for masonry solids with brittle time-decaying tensile limit strength. Acta Mech. 228, 837–849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lourenço, P.B., De Borst, R., Rots, J.G.: A plane stress softening plasticity model for orthotropic materials. Int. J. Numer. Methods Eng. 40(21), 4033–4057 (1997)

    Article  MATH  Google Scholar 

  18. Lourenço, P.B., Rots, J.G., Blaauwendraad, J.: Continuum model for masonry: parameter estimation and validation. J. Struct. Eng. ASCE 124(6), 642–652 (1998)

    Article  Google Scholar 

  19. Berto, L., Saetta, A., Scotta, R., Vitaliani, R.: An orthotropic damage model for masonry structures. Int. J. Numer. Methods Eng. 55(2), 127–157 (2002)

    Article  MATH  Google Scholar 

  20. Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978)

    Google Scholar 

  21. Bakhvalov, N., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials. Kluwer Academic, Dordrecht (1989)

    MATH  Google Scholar 

  22. Lopez, J., Oller, S., Oñate, E., Lubliner, J.: A homogeneous constitutive model for masonry. Int. J. Numer. Methods Eng. 46(10), 1651–1671 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van der Pluijm, R.: Out-of-plane bending of masonry: behaviour and strength. Ph.D. thesis, Department of Architecture, Building and Planning, Eindhoven University of Technology, Eindhoven, The Netherlands (1999)

  24. Zucchini, A., Lourenço, P.: A micro-mechanical model for the homogenisation of masonry. Int. J. Solids Struct. 39(12), 3233–3255 (2002)

    Article  MATH  Google Scholar 

  25. Ziegler, F.: Mechanics of Solids and Fluids, 2nd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  26. Sobotka, Z.: Theorie des plastischen Fließens von anisotropen Kőrpern. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM) 49(1–2), 25–32 (1969)

    Article  MATH  Google Scholar 

  27. Boehler, J., Sawczuk, A.: Equilibre limite des sols anisotropes. J. Mécanique 9(1), 5–33 (1970)

    MATH  Google Scholar 

  28. Betten, J.: Applications of tensor functions to the formulation of yield criteria for anisotropic materials. Int. J. Plast. 4(1), 29–46 (1988)

    Article  MATH  Google Scholar 

  29. Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plast. 7(7), 693–712 (1991)

    Article  Google Scholar 

  30. Karafillis, A., Boyce, M.: A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41(12), 1859–1886 (1993)

    Article  MATH  Google Scholar 

  31. Oller, S., Botello, S., Miquel, J., Oñate, E.: An anisotropic elastoplastic model based on an isotropic formulation. Eng. Comput. 12(3), 245–262 (1995)

    Article  MATH  Google Scholar 

  32. Oller, S., Car, E., Lubliner, J.: Definition of a general implicit orthotropic yield criterion. Comput. Methods Appl. Mech. Eng. 192(7), 895–912 (2003)

    Article  MATH  Google Scholar 

  33. Pelà, L., Cervera, M., Roca, P.: Continuum damage model for orthotropic materials: application to masonry. Comput. Methods Appl. Mech. Eng. 200(9), 917–930 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pelà, L., Cervera, M., Roca, P.: An orthotropic damage model for the analysis of masonry structures. Constr. Build. Mater. 41, 957–967 (2013)

    Article  Google Scholar 

  35. Barlat, F., Aretz, H., Yoon, J., Karabin, M., Brem, J., Dick, R.: Linear transformation-based anisotropic yield functions. Int. J. Plast. 21(5), 1009–1039 (2005)

    Article  MATH  Google Scholar 

  36. Barlat, F., Lian, K.: Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int. J. Plast. 5(1), 51–66 (1989)

    Article  Google Scholar 

  37. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  38. Lemaitre, J., Chaboche, J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  39. Simo, J., Ju, J.: Strain-and stress-based continuum damage models—I. Formulation. Int. J. Solids Struct. 23(7), 821–840 (1987)

    Article  MATH  Google Scholar 

  40. Faria, R., Oliver, J., Cervera, M.: Modeling material failure in concrete structures under cyclic actions. J. Struct. Eng. ASCE 130(12), 1997–2005 (2004)

    Article  Google Scholar 

  41. Lee, J., Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. ASCE 124(8), 892–900 (1998)

    Article  Google Scholar 

  42. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mazars, J.: A description of micro- and macroscale damage of concrete structures. Eng. Fract. Mech. 25(5), 729–737 (1986)

    Article  Google Scholar 

  44. Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory application to concrete. J. Eng. Mech. ASCE 115(2), 345–365 (1989)

    Article  Google Scholar 

  45. Oliver, J., Cervera, M., Oller, S., Lubliner, J.: Isotropic damage models and smeared crack analysis of concrete. In: Proceedings of SCI-C Computer Aided Analysis and Design of Concrete Structures, pp. 987–1010. Pineridge Press, Swansea (1990)

  46. ANSYS Engineering Simulation Software: User’s Manual, Version 13. ANSYS Inc., Canonburg (2010)

  47. Nazar, M.E., Sinha, S.N.: Loading–unloading curves of interlocking grouted stabilised sand–flyash brick masonry. Mater. Struct. 40(7), 667–678 (2007)

    Article  Google Scholar 

  48. Nazar, M.E., Sinha, S.N.: Behavior of interlocking grouted stabilized sand–fly ash brick masonry under uniaxial cyclic compressive loading. J. Mater. Civ. Eng. 19(11), 947–956 (2007)

    Article  Google Scholar 

  49. Raijmakers, T.M.J., Vermeltfoort, A.T.: Deformation controlled meso shear tests on masonry piers. In: Report B-92-1156, TNO-BOUW, Building and Construction Research, Eindhoven University of Technology, The Netherlands (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri E. Beskos.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Qian, J. & Beskos, D.E. Inelastic anisotropic constitutive models based on evolutionary linear transformations on stress tensors with application to masonry. Acta Mech 229, 719–743 (2018). https://doi.org/10.1007/s00707-017-1995-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1995-0

Navigation