Skip to main content
Log in

On a constitutive equation of heat conduction with fractional derivatives of complex order

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study the heat conduction with a general form of a constitutive equation containing fractional derivatives of real and complex order. Using the entropy inequality in a weak form, we derive sufficient conditions on the coefficients of a constitutive equation that guarantee that the second law of thermodynamics is satisfied. This equation, in special cases, reduces to known ones. Moreover, we present a solution of a temperature distribution problem in a semi-infinite rod with the proposed constitutive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Application in Mechanics: Vibrations and Diffusion Processes, ISTE, London. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  2. Atanackovic, M., Pilipovic, S., Zorica, D.: Diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theor. 40, 5319–5333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanackovic, M., Pilipovic, S., Zorica, D.: Time distributed order diffusion-wave equation part I: Volterra type equation. Proc. R. Soc. Lond. Ser. A 465, 1869–1891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanackovic, T.M., Konjik, S., Pilipovic, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time-Depend. Mater. 20, 175–195 (2016)

    Article  Google Scholar 

  5. Atanackovic, T.M., Janev, M., Konjik, S., Pilipovic, S.: Wave equation for generalized Zener model containing complex order fractional derivatives. Contin. Mech. Thermodyn. (2017). doi:10.1007/s00161-016-0548-4

    MathSciNet  MATH  Google Scholar 

  6. Atanackovic, T.M., Janev, M., Pilipovic, S., Zorica, D.: Euler–Lagrange equations for Lagrangians containing complex-order fractional derivatives. J. Optim. Theory Appl. 174, 256–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atanackovic, T.M., Janev, M., Konjik, S., Pilipovic, S., Zorica, D.: Expansion formula for fractional derivatives in variational problems. J. Math. Anal. Appl. 409, 911–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cattaneo, C.: Del calore, sulla conduzione: Atti del Sem. Mat. Fis. Univ. di Modena 3, 83–101 (1948)

  9. Cimmelli, V.A., Kosiński, W., Saxtion, K.: A New approach to the theory of heat conduction with finite wave speed. Le Matematiche XLVI, 95–105 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, New York (2007)

    MATH  Google Scholar 

  11. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  13. Day, W.A.: The Thermodynamics of Simple Materials with Fading Memory. Springer Tracts in Natural Philosopy, vol. 22. Springer, Berlin (1972)

    MATH  Google Scholar 

  14. von Ende, S., Lion, A., Lammering, R.: On the thermodynamically consistent fractional wave equation for viscoelastic solids. Acta Mech. 221, 1–10 (2011)

    Article  MATH  Google Scholar 

  15. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Book  MATH  Google Scholar 

  16. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joseph, D.D., Preziosi, L.: Addendum to the paper, "Heat waves" [Reviews of Modern Physics, 61, 41 (1989)]. Rev. Mod. Phys. 62, 375–391 (1990)

    Article  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  19. Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 2(3), 241–259 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macris, N.: Complex-parameter Kelvin model for elastic foundations. Earthq. Eng. Struct. Dyn. 23(3), 251–264 (1994)

    Article  Google Scholar 

  21. Makris, N., Constantinou, M.: Models of viscoelasticity with complex-order derivatives. J. Eng. Mech. 119, 1453–1464 (1993)

    Article  Google Scholar 

  22. Makris, N., Dargush, G.F., Constantinou, M.C.: Dynamic analysis of generalized viscoelastic fluids. J. Eng. Mech. 119, 1663–1679 (1993)

    Article  Google Scholar 

  23. Fabrizio, M., Giorgi, C., Morro, A.: Modeling of heat conduction via fractional derivatives. Heat. Mass. Transf. 53, 1–13 (2017)

    Article  Google Scholar 

  24. Morro, A.: Jump relations and discontinuity waves in conductors with memory. Math. Comput. Model. 43, 138–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, I.: Kinetic theory and extended thermodynamics. In: Müller, I., Ruggeri, T. (eds.) Proceedings of the ISMM Symposium on Kinetic Theory and Extended Thermodynamics, Bologna, May 18–20, pp. 245–258. Pitagora Editrice, Bologna, (1987)

  26. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosphy, vol. 37, second edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  27. Ostoja-Strarzewski, M.: A derivation of the Maxwell–Cattaneo equation from the free energy and dissipation potentials. Int. J. Eng. Sci. 47, 807–810 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  29. Povstenko, Y.: Fractional Thermoelasticity. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  30. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  31. Straughan, B.: Heat Waves. Springer, New York (2011)

    Book  MATH  Google Scholar 

  32. Swenson, R.J.: Generalized heat conduction equation. Am. J. Phys. 46, 76–77 (1978)

    Article  MathSciNet  Google Scholar 

  33. Zorski, H. (ed.): Foundations of Mechanics, Studies in Applied Mechanics 28. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor M. Atanackovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanackovic, T.M., Pilipovic, S. On a constitutive equation of heat conduction with fractional derivatives of complex order. Acta Mech 229, 1111–1121 (2018). https://doi.org/10.1007/s00707-017-1959-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1959-4

Mathematics Subject Classification

Navigation