Skip to main content
Log in

A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium is developed by using an extended version of the modified couple stress theory and a three-parameter foundation model. The equations of motion and the boundary conditions are simultaneously obtained through a variational formulation based on Hamilton’s principle. The new plate model contains three material length scale parameters to capture the microstructure effect, one damping coefficient to account for the viscoelastic damping effect, and two foundation moduli to represent the foundation effect. The current non-classical orthotropic plate model includes the isotropic plate model incorporating the microstructure effect and the classical elasticity-based orthotropic plate model as special cases. To illustrate the new model, the static bending and free vibration problems of a simply supported orthotropic plate are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that the deflection of the simply supported plate predicted by the current model is smaller than that predicted by the classical model, and the difference is large when the plate thickness is small but diminishes as the thickness becomes large. For the free vibration problem, it is found that the natural frequency predicted by the new plate model with or without the foundation is higher than that predicted by the classical plate model, and the difference is significant for very thin plates. In addition, the damping ratio predicted by the new plate model is lower than that predicted by the classical plate model, and the difference is diminishing as the plate thickness increases. These predicted trends of the size effect at the micron scale agree with those observed experimentally. Furthermore, it is quantitatively shown that the presence of the foundation enlarges the plate natural frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, R.M.: Mechanics of Composite Materials. Taylor & Francis, New York (1999)

    Google Scholar 

  2. Arani, A.G., Jalaei, M.H.: Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation. Int. J. Eng. Sci. 103, 97–113 (2016)

    Article  MathSciNet  Google Scholar 

  3. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  4. Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)

    Article  MATH  Google Scholar 

  5. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  6. Lazopoulos, K.A.: On the gradient strain elasticity theory of plates. Eur. J. Mech. A/Solids 23, 843–852 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  8. Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, X.-L., Zhou, S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. Angew. Math. Phys. 64, 1363–1386 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lazar, M., Maugin, G.A., Aifantis, E.C.: On dislocations in a special class of generalized elasticity. Phys. Status Solidi (b) 242, 2365–2390 (2005)

    Article  Google Scholar 

  11. Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Papargyri-Beskou, S., Beskos, D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  13. Papargyri-Beskou, S., Giannakopoulos, A.E., Beskos, D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  14. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  15. Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M., Reddy, J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  17. Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  19. Jomehzadeh, E., Noori, H.R., Saidi, A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E 43, 877–883 (2011)

    Article  Google Scholar 

  20. Akgöz, B., Civalek, Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  22. Gao, X.-L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhou, S.-S., Gao, X.-L.: A non-classical model for circular Mindlin plates based on a modified couple stress theory. ASME J. Appl. Mech. 81, 051014-1–051014-8 (2014)

    Google Scholar 

  24. Zhang, G.Y., Gao, X.-L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gao, X.-L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Continuum Mech. Thermodyn. 28, 195–213 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gao, X.-L., Zhang, G.Y.: A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proc. R. Soc. A 472, 20160275-1–20160275-25 (2016)

    MATH  MathSciNet  Google Scholar 

  27. Zhang, G.Y., Gao, X.-L., Tang, S.: A non-classical model for circular Mindlin plates incorporating microstructure and surface energy effects. Procedia IUTAM 21, 48–55 (2017)

    Article  Google Scholar 

  28. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011)

    Article  Google Scholar 

  29. Hosseini, M., Bahreman, M., Jamalpoor, A.: Using the modified strain gradient theory to investigate the size-dependent biaxial buckling analysis of an orthotropic multi-microplate system. Acta Mech. 227, 1621–1643 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  31. Tsiatas, G.C., Yiotis, A.J.: Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. 226, 1267–1281 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Guo, J., Chen, J., Pan, E.: Analytical three-dimensional solutions of anisotropic multilayered composite plates with modified couple-stress effect. Compos. Struct. 153, 321–331 (2016)

    Article  Google Scholar 

  33. Guo, J., Chen, J., Pan, E.: Size-dependent behavior of functionally graded anisotropic composite plates. Int. J. Eng. Sci. 106, 110–124 (2016)

    Article  MathSciNet  Google Scholar 

  34. Chen, W., Li, X.: A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Arch. Appl. Mech. 84, 323–341 (2014)

    Article  MATH  Google Scholar 

  35. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  36. Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wet. B 67, 17–44 (1964)

    MATH  MathSciNet  Google Scholar 

  37. Lakes, R.S., Benedict, R.L.: Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161–1167 (1982)

    Article  MATH  Google Scholar 

  38. Lazar, M., Kirchner, H.O.K.: Cosserat (micropolar) elasticity in Stroh form. Int. J. Solids Struct. 42, 5377–5398 (2005)

    Article  MATH  Google Scholar 

  39. Iesan, D., Scalia, A.: On the deformation of orthotropic Cosserat elastic cylinders. Math. Mech. Solids 16, 177–199 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13, 53–83 (2014)

    Article  Google Scholar 

  41. Ghiba, I.D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids. 22, 1221–1266 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  42. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, Hoboken, NJ (2002)

    Google Scholar 

  43. Selvadurai, A.P.S.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, Amsterdam (1979)

    Google Scholar 

  44. Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)

    Article  Google Scholar 

  46. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  47. Gao, X.-L., Zhang, G.Y.: A microstructure- and surface energy-dependent third-order shear deformation beam model. Z. Angew. Math. Phys. 66, 1871–1894 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  48. Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  49. Xing, Y.F., Liu, B.: New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos. Struct. 89, 567–574 (2009)

    Article  Google Scholar 

  50. Joshi, P.V., Jain, N.K., Ramtekkar, G.D.: Analytical modelling for vibration analysis of partially cracked orthotropic rectangular plates. Euro. J. Mech. A/Solids 50, 100–111 (2015)

    Article  MathSciNet  Google Scholar 

  51. Park, S.K., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G.Y., Gao, XL. & Guo, Z.Y. A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech 228, 3811–3825 (2017). https://doi.org/10.1007/s00707-017-1906-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1906-4

Navigation