Skip to main content
Log in

The meshless finite point method for transient elastodynamic problems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the application of the meshless finite point method (FPM) to solve elastodynamic problems through an explicit velocity–Verlet time integration method is investigated. Strong form-based methods, such as the FPM, are generally less stable and accurate in terms of satisfaction of Neumann boundary conditions than weak form-based methods. This is due to the fact that in such types of methods, Neumann boundary conditions must be imposed by a series of equations which are different from the governing equations in the problem domain. In this paper, keeping all the advantages of FPM in terms of simplicity and efficiency, a new simple strategy for proper satisfaction of Neumann boundary conditions in time for elastodynamic problems is investigated. The method is described in detail, and several numerical examples are presented. Moreover, the accuracy of the method with reference to the solution of some 3D problems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AMGCL C++ library. https://github.com/ddemidov/amgcl. Accessed 11 Feb 2017

  2. Bajko, J., Čermák, L., Jícha, M.: High order finite point method for the solution to the sound propagation problems. Comput. Methods Appl. Mech. Eng. 280, 157–175 (2014)

    Article  MathSciNet  Google Scholar 

  3. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boroomand, B., Najjar, M., Oñate, E.: The generalized finite point method. Comput. Mech. 44(2), 173–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boroomand, B., Tabatabaei, A.A., Oñate, E.: Simple modifications for stabilization of the finite point method. Int. J. Numer. Methods Eng. 63(3), 351–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, B., Wang, Q., Zhang, W., Wang, L.: The complex variable meshless local Petrov–Galerkin method for elastodynamic problems. Appl. Math. Comput. 243, 311–321 (2014). doi:10.1016/j.amc.2014.05.123

    MathSciNet  MATH  Google Scholar 

  7. Fang, J., Parriaux, A.: A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227(20), 8894–8908 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giunta, G., Belouettar, S., Ferreira, A.J.M.: A static analysis of three-dimensional functionally graded beams by hierarchical modelling and a collocation meshless solution method. Acta Mech. 227(4), 969–991 (2016). doi:10.1007/s00707-015-1503-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Hsieh, P.W., Shih, Y., Yang, S.Y.: A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun. Comput. Phys. 10(01), 161–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. La Rocca, A., Power, H.: A double boundary collocation hermitian approach for the solution of steady state convection–diffusion problems. Comput. Math. Appl. 55(9), 1950–1960 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liszka, T., Duarte, C., Tworzydlo, W.: hp-Meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)

    Article  MATH  Google Scholar 

  12. Liu, G., Gu, Y.: A meshfree method: meshfree weak–strong (mws) form method, for 2-d solids. Comput. Mech. 33(1), 2–14 (2003)

    Article  MATH  Google Scholar 

  13. Liu, G., Wu, Y., Ding, H.: Meshfree weak–strong (mws) form method and its application to incompressible flow problems. Int. J. Numer. Meth. Fluids 46(10), 1025–1047 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. Taylor & Francis, London (2010)

    Google Scholar 

  15. Mirzaei, D., Hasanpour, K.: Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech. 227(3), 619–632 (2016). doi:10.1007/s00707-015-1494-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Mossaiby, F., Ghaderian, M.: A preliminary study on the meshless local exponential basis functions method for nonlinear and variable coefficient pdes. Eng. Comput. 33(8), 2238–2263 (2016)

    Article  Google Scholar 

  17. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oñate, E.: Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems. Comput. Methods Appl. Mech. Eng. 151(1–2), 233–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L.: A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39(22), 3839–3866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oñate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79(22–25), 2151–2163 (2001)

    Article  Google Scholar 

  21. Ortega, E., Oñate, E., Idelsohn, S.: An improved finite point method for tridimensional potential flows. Comput. Mech. 40(6), 949–963 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sadeghirad, A., Kani, I.M.: Modified equilibrium on line method for imposition of neumann boundary conditions in meshless collocation methods. Int. J. Numer. Methods Biomed. Eng. 25(2), 147–171 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Sadeghirad, A., Mohammadi, S.: Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM). Int. J. Numer. Methods Eng. 69(1), 60–86 (2007)

    Article  MATH  Google Scholar 

  24. Shojaei, A., Boroomand, B., Mossaiby, F.: A simple meshless method for challenging engineering problems. Eng. Comput. 32(6), 1567–1600 (2015)

    Article  Google Scholar 

  25. Shojaei, A., Boroomand, B., Soleimanifar, E.: A meshless method for unbounded acoustic problems. J. Acoust. Soc. Am. 139(5), 2613–2623 (2016)

    Article  Google Scholar 

  26. Shojaei, A., Mudric, T., Zaccariotto, M., Galvanetto, U.: A coupled meshless finite point/peridynamic method for 2d dynamic fracture analysis. Int. J. Mech. Sci. 119, 419–431 (2016)

    Article  Google Scholar 

  27. Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7), 941–954 (2003)

    Article  MATH  Google Scholar 

  28. Tatari, M., Kamranian, M., Dehghan, M.: The finite point method for the p-Laplace equation. Comput. Mech. 48(6), 689–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)

    Google Scholar 

  30. Wu, N.J., Chen, B.S., Tsay, T.K.: A review on the modified finite point method. Math. Probl. Eng. 2014, 1–29 (2014)

    MathSciNet  Google Scholar 

  31. Zhang, X., Song, K.Z., Lu, M.W., Liu, X.: Meshless methods based on collocation with radial basis functions. Comput. Mech. 26(4), 333–343 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support of the ‘Visiting Scientist’ scheme of Padua university is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Mossaiby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, A., Mossaiby, F., Zaccariotto, M. et al. The meshless finite point method for transient elastodynamic problems. Acta Mech 228, 3581–3593 (2017). https://doi.org/10.1007/s00707-017-1894-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1894-4

Navigation