Skip to main content
Log in

Axisymmetric deformation of geometrically imperfect circular graphene sheets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, we investigate the axisymmetric deformation of a geometrically imperfect circular graphene sheet subjected to a uniform radial load using nonlocal elasticity theory. Due to the imperfection of the graphene sheet, an inhomogeneous version of Bessel’s equation is derived as a nonlocal governing equation of the system. Closed-form expressions are obtained to predict the deformations of the graphene sheet as functions of the radius, small-scale coefficient, initial imperfection, and bending rigidity of the graphene sheet. Furthermore, relations are proposed to determine critical radial loads. The present model indicates that it is necessary to include the effect of an initial imperfection as well as the small-scale effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurney, B.A., Marinoro, E.E., Pisana, S.: Tunable graphene magnetic field sensor. US Patent 2011/0037464 A1 (2011)

  2. Schelter, J., Recher, P., Trauzettel, B.: The Aharonov–Bohm effect in graphene rings. Solid State Commun. 152, 1411–1419 (2012)

    Article  Google Scholar 

  3. Eriksson, A.M., Midtvedt, D., Croy, A., Isacsson, A.: Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators. Nanotechnology 24, 395702 (2013)

    Article  Google Scholar 

  4. Duan, W.H., Wang, C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    Article  Google Scholar 

  5. Duan, W.H., Wang, C.M.: Nonlinear bending and stretching of a circular graphene sheet under a central point load. Nanotechnology 20, 075702 (2009)

    Article  Google Scholar 

  6. Scarpa, F., Adhikari, S., Gil, A.J., Remillat, C.: The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21, 125702 (2010)

    Article  Google Scholar 

  7. Gil, A.J., Adhikari, S., Scarpa, F., Bonet, J.: The formation of wrinkles in single-layer graphene sheets under nanoindentation. J. Phys.: Condens. Matter 22, 145302 (2010)

    Google Scholar 

  8. Neek-Amal, M., Peeters, F.M.: Nanoindentation of a circular sheet of bilayer graphene. Phys. Rev. B 81, 235421 (2010)

    Article  Google Scholar 

  9. Farajpour, A., Mohammadi, M., Shahidi, A.R., Mahzoon, M.: Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Phys. E 43, 1820–1825 (2011)

    Article  Google Scholar 

  10. Farajpour, A., Dehghany, M., Shahidi, A.R.: Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment. Compos. Part. B : Eng. 50, 333–343 (2013)

    Article  Google Scholar 

  11. Natsuki, T., Shi, J.X., Ni, Q.Q.: Buckling instability of circular double-layered graphene sheets. J. Phys.: Condens. Matter 24, 135004 (2012)

    Google Scholar 

  12. Zhang, Z., Duan, W.H., Wang, C.M.: Tunable wrinkling pattern in annular graphene under circular shearing at inner edge. Nanoscale 4, 5077 (2012)

    Article  Google Scholar 

  13. Dastjerdi, S., Jabbarzadeh, M., Aliabadi, S.: Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler–Pasternak elastic matrix based on non-local theory of Eringen. Ain Shams Eng. J. 7, 873–884 (2016)

    Article  Google Scholar 

  14. Dastjerdi, S., Jabbarzadeh, M.: Non-linear bending analysis of multi-layer orthotropic annular/circular graphene sheets embedded d in elastic matrix in thermal environment based on non-local elasticity theory. Appl. Math. Model. 41, 83–101 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bonilla, L.L., Ruiz-Garcia, M.: Critical radius and temperature for buckling in graphene. Phys. Rev. B 93, 115407 (2016)

    Article  Google Scholar 

  16. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  Google Scholar 

  17. Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)

    Article  Google Scholar 

  18. Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C., Lau, C.N.: Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 565–566 (2009)

    Article  Google Scholar 

  19. Neek-Amal, M., Peeters, F.M.: Buckled circular monolayer graphene: a graphene nano-bowl. J. Phys.: Condens. Matter 23, 045002 (2011)

    Google Scholar 

  20. Benvenuti, E., Simone, A.: One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech. Res. Commun. 48, 46–51 (2013)

    Article  Google Scholar 

  21. Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B: Eng. 114, 184–188 (2017)

    Article  Google Scholar 

  22. Romano, G., Barretta, R., Diaco, M., de Sciarra, F.M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  23. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  24. Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.A.: Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

    Article  MathSciNet  Google Scholar 

  25. Karamooz Ravari, M.R., Shahidi, A.R.: Axisymmetric buckling of the circular annular nanoplates using finite difference method. Meccanica 48, 135–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kudin, K.N., Scuseria, G.E., Yakobson, I.B.: C2F, BN and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  27. Bazant, Z., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  28. Gao, Y., Hao, P.: Mechanical properties of monolayer graphene under tensile and compressive loading. Phys. E 41, 1561–1566 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E. Axisymmetric deformation of geometrically imperfect circular graphene sheets. Acta Mech 228, 3297–3305 (2017). https://doi.org/10.1007/s00707-017-1891-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1891-7

Navigation