Skip to main content
Log in

Implementation of finite difference approximation on the SH-wave propagation in a multilayered magnetoelastic orthotropic composite medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents an outcome of the broader effect to assess the importance of magnetoelasticity, compressive and tensile initial stress in soil dynamics. Haskell’s matrix technique is employed to investigate the SH-wave propagation in a multilayered magnetoelastic orthotropic (MMO) medium. The dispersion relation for the total (\(n-1\)) layers lying over a half-space is obtained in a closed form. Special cases are derived for both the single and double layers, and the obtained relations are found to be in good agreement with the Classical Love wave equation. Based on the finite difference technique, a stability analysis is performed to reduce the escalation of errors to make it stable and convergent. The expression for the phase and group velocities is attained by this technique when the SH-wave propagates across the MMO medium. Numerical computations and graphical exhibition have been carried out to show the effects of different values of the magnetoelastic coupling parameter, compressive and tensile initial stresses and courant number on the phase and group velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Knopoff, L.: The interaction between elastic wave motions and a magnetic field in electrical conductors. J. Geophys. Res. 60, 441–456 (1955)

    Article  Google Scholar 

  2. Chadwick, P.: Elastic wave propagation in a magnetic field. In: Proceedings of the International Congress of Applied Mechanics, Belgium (1957)

  3. Kaliski, S., Petykiewicz, J.: Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for anisotropic bodies. Proc. Vib. Prob. 1, 3–11 (1959)

    MATH  Google Scholar 

  4. Chattopadhyay, A., Maugin, G.A.: Magneto elastic surface shear waves due to a momentary point source. J. Acoust. Soc. Am. 94, 437–446 (1993)

    Article  Google Scholar 

  5. Mukhopadhyay, S., Roychoudhuri, S.K.: Magneto-thermo-elastic interactions in an infinite isotropic elastic cylinder subjected to a periodic loading. Int. J. Eng. Sci. 35, 437–444 (1997)

    Article  MATH  Google Scholar 

  6. Abd-Alla, A.M., Hammad, H.A.H., Abo-Dahab, S.M.: Rayleigh waves in a magnetoelastic half-space of orthotropic material under influence of initial stress and gravity field. Appl. Math. Comput. 154, 583–597 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Acharya, D.P., Roy, I., Sengupta, S.: Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media. Acta Mech. 202, 35–45 (2009)

    Article  MATH  Google Scholar 

  8. Singh, A.K., Kumar, S., Chattopadhyay, A.: Effect of smooth moving punch in an initially stressed monoclinic magneto elastic crystalline medium due to shear wave propagation. J. Vib. Control. 22(11), 2719–2730 (2016)

  9. Kumari, P., Sharma, V.K., Modi, C.: Modeling of magnetoelastic shear waves due to point source in a viscoelastic crustal layer over an inhomogeneous viscoelastic half-space. Waves Random Complex Media. 26, 101–120 (2016)

    Article  MathSciNet  Google Scholar 

  10. Pallavika, V.K., Chakraborty, S.K., Sinha, A.: Finite difference modeling of SH-wave propagation in multilayered porous crust J. Ind. Geophys. Union 12(4), 165–172 (2008)

  11. Kalyani, Vijay, et al.: Finite difference modeling of seismic wave propagation in monoclinic media. Acta Geophys. 56(4), 1074–1089 (2008)

  12. Chattopadhyay, A., Gupta, S., Singh, A.K.: The dispersion of shear wave in multilayered magneto elastic self-reinforced media. Int. J. Solids Struct. 47, 1317–1324 (2010)

    Article  MATH  Google Scholar 

  13. Kelly, K.R., Ward, R.W., Treitel, S., Alford, R.M.: Synthetic seismograms, a finite-difference approach. Geophysics 41, 2–27 (1976)

    Article  Google Scholar 

  14. Emerman, S.H., Schmidt, W., Stephen, R.A.: An implicit finite-difference formulation of the elastic wave equation. Geophysics 47, 1521–1526 (1982)

    Article  Google Scholar 

  15. Mufti, I.R.: Seismic modeling in the implicit mode. Geophys. Prospect. 33, 619–656 (1985)

    Article  Google Scholar 

  16. Moczo, P., Robertsson, J.O.A., Eisner, L.: The finite-difference time-domain method for modeling of seismic wave propagation. Adv. Geophys. 48, 421–516 (2007)

  17. Crampin, S.: The dispersion of surface waves in multilayered anisotropic media. Geophys. J. Int. 21(3), 387–402 (1970)

    Article  MATH  Google Scholar 

  18. Mitchell, A.R.: Computational Methods in Partial Differential Equations. Wiley, New York (1969)

    MATH  Google Scholar 

  19. Gazdag, J.: Modelling of the acoustic wave equation with transform methods. Geophysics 46, 854–859 (1981)

    Article  Google Scholar 

  20. Holberg, O.: Computational aspects of the choice of operator and sampling interval for numerical differentiation in large scale simulation of wave phenomena. Geophys. Prosp. 35, 629–655 (1987)

    Article  Google Scholar 

  21. Aki K., Richards P.G.: Quantitative Seismology, Theory and Methods, vol. 1. WH Freeman & Co., New York (1980)

  22. Chattopadhyay, A., Maugin, G.A.: Diffraction of magnetoelastic shear waves by a rigid strip. J. Acoust. Soc. Am. 78, 217–222 (1985)

    Article  MATH  Google Scholar 

  23. Biot, M.A.: Mechanics of Incremental Deformation. Wiley, New York (1965)

    Google Scholar 

  24. Ewing, W.M., Jardetzky, W.S., Press, F.: Elastic Wave in Layered Media. McGraw-Hill, New York (1957)

  25. Nayfeh, A.H.: Wave Propagation in Layered Anisotropic Media with Applications to Composites. North-Holland, Amsterdam (1995)

    MATH  Google Scholar 

  26. Kalyani, V.K.: Dispersion of love waves in an initially stressed multilayered crust. Indian J. Pure Appl. Math 21(11), 1029–1035 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelima Bhengra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Bhengra, N. Implementation of finite difference approximation on the SH-wave propagation in a multilayered magnetoelastic orthotropic composite medium. Acta Mech 228, 3421–3444 (2017). https://doi.org/10.1007/s00707-017-1884-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1884-6

Navigation