Skip to main content
Log in

Vibration of circular functionally graded piezoelectric plates in pre-/postbuckled configurations of bifurcation/limit load buckling

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Free vibration of pre-/postbuckled circular functionally graded piezoelectric (FGP) plates is studied in this research. The buckled configurations are considered to be resulting from either thermoelectrical bifurcation buckling or limit load buckling due to lateral loading of thermally preloaded plates. The nonlinear governing equations of motion and associated boundary conditions are extracted by the generalized form of Hamilton’s principle. The Ritz finite element method is then implemented to construct the matrix representation of governing equations which are solved by two different strategies including Newton–Raphson scheme and cylindrical arc-length method. The thermoelectromechanical properties of FGPM plates are considered to be graded in the thickness direction on the basis of a power law function. Moreover, two cases of thermal loading, i.e., uniform temperature rise and heat conduction across the thickness as well as two types of boundary conditions, including clamped and simply supported, are considered. Comparison studies are presented to validate the numerical results. Furthermore, extensive parametric studies are conducted to assess the influence of involved parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin, R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23, 83–88 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crawley, E.F., De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1373–1385 (1987)

    Article  Google Scholar 

  3. Lee, H.J.: Layerwise laminate analysis of functionally graded piezoelectric bimorph beams. J. Intell. Mater. Syst. Struct. 16, 365–371 (2005)

    Article  Google Scholar 

  4. Zhu, X.H., Meng, Z.: Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator. Sens. Actuators 48, 169–176 (1995)

    Article  Google Scholar 

  5. Wu, C.C.M., Kahn, M., Moy, W.: Piezoelectric ceramics with functional gradients: a new application in material design. J. Am. Ceram. Soc. 79, 809–812 (1996)

    Article  Google Scholar 

  6. Wang, Y.Z., Cui, H.T., Li, F.M., Kishimoto, K.: Thermal buckling of nanoplate with small-scale effects. Acta Mech. 224, 1299–1307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ashoori, A.R., Sadough, S.A.: Thermal buckling of annular microstructure-dependent functionally graded material plates resting on an elastic medium. Compos. B 87, 245–255 (2016)

    Article  Google Scholar 

  8. Ashoori, A.R., Sadough, S.A.: Nonlinear thermal stability and snap-through behavior of circular microstructure-dependent FGM plates. Eur. J. Mech. A Solids 59, 323–332 (2016)

    Article  MathSciNet  Google Scholar 

  9. Arefi, M., Nahas, I.: Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell. Compos. Struct. 118, 510–518 (2014)

    Article  Google Scholar 

  10. Abdollahi, M., Saidi, A.R., Mohammadi, M.: Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory. Acta Mech. 226, 2497–2510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, J.S.: Buckling of a piezoelectric plate. J. Appl. Electromagn. Mech. 9, 399–408 (1998)

    Google Scholar 

  12. Krommer, M., Irschik, H.: A Reissner–Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech. 141, 51–69 (2000)

    Article  MATH  Google Scholar 

  13. Chen, W.Q., Lu, Y., Ye, J.R., Cai, J.B.: 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading. Arch. Appl. Mech. 72, 39–51 (2002)

    Article  MATH  Google Scholar 

  14. Ding, H.J., Wang, H.M., Chen, W.Q.: Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems. Int. J. Mech. Sci. 45, 1029–1051 (2003)

    Article  MATH  Google Scholar 

  15. Ying, C., Zhi-fei, S.: Analysis of a functionally graded piezothermoelastic hollow cylinder. J. Zhejiang Univ. Sci. 6A, 956–961 (2005)

    Article  MATH  Google Scholar 

  16. Lu, P., Lee, H.P., Lu, C.: Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Compos. Struct. 72, 352–363 (2006)

    Article  Google Scholar 

  17. Huang, X.L., Shen, H.S.: Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J. Sound Vib. 289, 25–53 (2006)

    Article  Google Scholar 

  18. Wu, C.P., Syu, Y.S.: Exact solution of functionally graded piezoelectric shells under cylindrical bending. Int. J. Solids Struct. 44, 6450–6472 (2007)

    Article  MATH  Google Scholar 

  19. Ootao, Y., Tanigawa, Y.: Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere. Compos. Struct. 81, 540–549 (2007)

    Article  Google Scholar 

  20. Butz, A., Klinkel, S., Wagner, W.: A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int. J. Numer. Methods Eng. 76, 601–635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Behjat, B., Salehi, M., Sadighi, M., Armin, A., Abbasi, M.: Static, dynamic and free vibration analysis of functionally graded piezoelectric panels using finite element method. J. Intell. Mater. Syst. Struct. 20, 1635–1646 (2009)

    Article  Google Scholar 

  22. Tanveer, M., Sing, A.V.: Nonlinear forced vibrations of laminated piezoelectric plates. J. Vib. Acoust. 132, 1–13 (2010)

    Article  Google Scholar 

  23. Thinh, T., Ngoc, L.K.: Static behavior and vibration control of piezoelectric cantilever composite plates and comparison with experiments. Comput. Mater. Sci. 49, 276–280 (2010)

    Article  Google Scholar 

  24. Liew, K.M., Zhao, X., Ferreira, A.J.M.: A review of mesh-less methods for laminated and functionally graded plates and shells. Compos. Struct. 93, 2031–2041 (2011)

    Article  Google Scholar 

  25. Carrera, E., Brischetto, S., Robaldo, A.: Variable kinematic model for the analysis of functionally graded material plates. AIAA 46, 194–203 (2008)

    Article  Google Scholar 

  26. Ke, L.L., Wang, Y.S., Wang, Z.D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94, 2038–2047 (2012)

    Article  Google Scholar 

  27. Liu, X., Wang, Q., Queck, S.T.: Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates. Int. J. Solids Struct. 39, 2129–2151 (2002)

    Article  MATH  Google Scholar 

  28. Shariyat, M.: Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Compos. Struct. 88, 240–252 (2009)

    Article  Google Scholar 

  29. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, New York (2004)

    Book  MATH  Google Scholar 

  30. Crisfield, M.A.: A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 13, 55–62 (1981)

    Article  MATH  Google Scholar 

  31. Li, S., Zhang, J., Zhao, Y.: Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection. Thin Walled Struct. 45, 528–536 (2007)

    Article  Google Scholar 

  32. Shariyat, M., Alipour, M.M.: Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations. Arch. App. Mech. 81, 1289–1306 (2011)

    Article  MATH  Google Scholar 

  33. Wu, T.Y., Wang, Y.Y., Liu, G.R.: Free vibration analysis of circular plates using generalized differential quadrature rule. Comput. Methods Appl. Mech. Eng. 191, 5365–5380 (2002)

    Article  MATH  Google Scholar 

  34. Doroushi, A., Eslami, M.R., Komeili, A.: Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. J. Intell. Mater. Syst. Struct. 22, 231–243 (2011)

    Article  Google Scholar 

  35. Bodaghi, M., Shakeri, M.: An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads. Compos. Struct. 94, 1721–1735 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sadough Vanini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashoori, A.R., Sadough Vanini, S.A. Vibration of circular functionally graded piezoelectric plates in pre-/postbuckled configurations of bifurcation/limit load buckling. Acta Mech 228, 2945–2964 (2017). https://doi.org/10.1007/s00707-017-1857-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1857-9

Navigation