Skip to main content
Log in

A Monte Carlo simulation method for non-random vibration analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In recent years, the authors developed a non-random vibration analysis method for structural dynamic analysis under uncertain excitations. In non-random vibration analysis, the interval process model is employed to describe the uncertain dynamic load rather than the traditional stochastic process model, and the structural dynamic response is obtained in the form of upper and lower bounds, rather than its precise probability distribution. Since the probability distribution information is not required, the non-random vibration analysis generally could decrease the dependence on large experimental sample number; meanwhile, the bounds of dynamic response are easy to understand conceptually and convenient to use in practical structural reliability or safety design. On the basis of our previous work, this paper further proposes a Monte Carlo simulation method, aiming to provide a general way for non-random vibration analysis and also offer a reference solution for other non-random vibration analysis methods proposed in the future. Firstly, a sampling approach is presented to realize the precise sampling of the single interval process and the multi-dimensional interval process vector. Then, based on the sampling approach, a calculation procedure of non-random vibration analysis is constructed to obtain the structural dynamic response bounds under uncertain dynamic load. Finally, the proposed method is not only applied to single-degree-of-freedom and multi-degree-of-freedom linear vibration systems, but also to more complex vibration systems such as nonlinear systems and continuum structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crandall, S.H.: Random Vibration. The MIT Press, Cambridge (1958)

    Google Scholar 

  2. Bolotin, V.V.: Statistical Methods in Structural Mechanics. Holden-Day, San Francisco (1969)

    MATH  Google Scholar 

  3. Lin, Y.K.: Probabilistic Theory of Structural Dynamics. McGraw-Hill, New York (1967)

    Google Scholar 

  4. Caughey, T.K.: Nonlinear theory of random vibrations. Adv. Appl. Mech. 11, 209–253 (1971)

    Article  Google Scholar 

  5. Roberts, J.B.: Response of nonlinear mechanical systems to random excitation. Part 1: Markov methods. Shock Vib. Dig. 13, 17–28 (1981)

    Google Scholar 

  6. Roberts, J.B.: Response of nonlinear mechanical systems to random excitation. Part 2: equivalent linearization and other methods. Shock Vib. Dig. 13, 15–29 (1981)

    Article  Google Scholar 

  7. Lin, J.H., Zhang, Y.H., Li, Q.S., et al.: Seismic spatial effects for long-span bridges using the pseudo excitation method. Eng. Struct. 26(9), 1207–1216 (2004)

    Article  Google Scholar 

  8. Spanos, P.D., Kougioumtzoglou, I.A.: Galerkin scheme based determination of first-passage probability of nonlinear system response. Struct. Infrastruct. Eng. 10(10), 1285–1294 (2014)

    Article  Google Scholar 

  9. Ben-Haim, Y., Elishakoff, I.: Convex Models of Uncertainties in Applied Mechanics. Elsevier Science Publisher, Amsterdam (1990)

    MATH  Google Scholar 

  10. Ben-Haim, Y.: Convex models of uncertainty in radial pulse buckling of shells. J. Appl. Mech. 60(3), 683–688 (1993)

    Article  MATH  Google Scholar 

  11. Elishakoff, I., Elisseeff, P.: Non probabilistic, convex-theoretic modeling of scatter in material properties. AIAA J. 32(4), 843–849 (1994)

    Article  MATH  Google Scholar 

  12. Ben-Haim, Y., Elishakoff, Y.I.: Discussion on: a non-probabilistic concept of reliability. Struct. Saf. 17(3), 195–199 (1995)

    Article  Google Scholar 

  13. Elishakoff, I.: An idea of the uncertainty triangle. Shock Vib. Dig. 22(10), 1 (1990)

    Article  Google Scholar 

  14. Qiu, Z.P.: Interval Analysis for Static Response and Eigenvalue Problem of Structures with Uncertain Parameters. Ph. D. Dissertation, Jilin University, Peoples’ Republic of China (1994)

  15. Qiu, Z.P., Wang, X.J.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)

    Article  MATH  Google Scholar 

  16. Qiu, Z.P., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152(3), 361–372 (1998)

    Article  MATH  Google Scholar 

  17. Wu, J., Zhao, Y.Q., Chen, S.H.: An improved interval analysis method for uncertain structures. Struct. Eng. Mech. 20(6), 713–726 (2005)

    Article  Google Scholar 

  18. Zhou, Y.T., Jiang, C., Han, X.: Interval and subinterval analysis methods of the structural analysis and their error estimations. Int. J. Comput. Methods 3(2), 229–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, W., Wu, D., Song, C.M., et al.: Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47, 643–652 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wu, D., Gao, W., Song, C.M., et al.: Probabilistic interval stability assessment for structures with mixed uncertainty. Struct. Saf. 58, 105–118 (2016)

    Article  Google Scholar 

  21. Wu, D., Gao, W., Li, G., et al.: Robust assessment of collapse resistance of structures under uncertain loads based on Info-Gap model. Comput. Methods Appl. Mech. Eng. 285, 208–227 (2015)

    Article  MathSciNet  Google Scholar 

  22. Moens, D., Vandepitte, D.: Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch. Comput. Methods Eng. 13(3), 389–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, W.: Interval finite element analysis using interval factor method. Comput. Mech. 39, 709–717 (2007)

    Article  MATH  Google Scholar 

  24. Muhanna, R.L., Zhang, H., Mullen, R.L.: Interval finite element as a basis for generalized models of uncertainty in engineering mechanics. Reliab. Comput. 13(2), 173–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, C., Han, X., Lu, G.Y., et al.: Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 200(33), 2528–2546 (2011)

    Article  MATH  Google Scholar 

  26. Kang, Z., Zhang, W.: Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Comput. Methods Appl. Mech. Eng. 300, 461–489 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kang, Z., Luo, Y.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput. Methods Appl. Mech. Eng. 198(41), 3228–3238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, C., Zhang, Q.F., Han, X., et al.: A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model. Acta Mech. 225(2), 383–395 (2014)

    Article  MATH  Google Scholar 

  29. Jiang, C., Zhang, Q.F., Han, X., et al.: Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis. Int. J. Numer. Methods Eng. 103(1), 31–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Elishakoff, I., Bekel, Y.: Application of Lamé’s super ellipsoids to model initial imperfections. ASME J. Appl. Mech. 80, 061006 (2013)

    Article  Google Scholar 

  31. Ni, B.Y., Elishakoff, I., Jiang, C., et al.: Generalization of the super ellipsoid concept and its application in mechanics. Appl. Math. Model. 40(21), 9427–9444 (2016)

    Article  MathSciNet  Google Scholar 

  32. Ben-Haim, Y.: A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Struct. Saf. 17(2), 91–109 (1995)

    Article  Google Scholar 

  33. Wang, X.J., Xia, Y., Zhou, X.Q., Chen, Y.: Structural damage measure index based on non-probabilistic reliability model. J. Sound Vib. 333(5), 1344–1355 (2014)

    Article  Google Scholar 

  34. Jiang, C., Bi, R.G., Lu, G.Y., et al.: Structural reliability analysis using non-probabilistic convex model. Comput. Methods Appl. Mech. Eng. 254, 83–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Du, X.P.: Interval reliability analysis. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA (2007), pp. 1103–1109

  36. Gao, W., Song, C., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 32(3), 191–199 (2010)

    Article  Google Scholar 

  37. Yang, X., Liu, Y., Zhang, Y., et al.: Probability and convex set hybrid reliability analysis based on active learning Kriging model. Appl. Math. Model. 39(14), 3954–3971 (2015)

    Article  MathSciNet  Google Scholar 

  38. Jiang, C., Ni, B.Y., Han, X., et al.: Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput. Methods Appl. Mech. Eng. 268, 656–676 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, C., Ni, B.Y., Liu, N.Y., et al.: Interval process model and non-random vibration analysis. J. Sound Vib. 373, 104–131 (2016)

    Article  Google Scholar 

  40. Jiang, C., Liu, N.Y., Ni, B.Y., et al.: Giving dynamic response bounds under uncertain excitations—a non-random vibration analysis method. Chin. J. Theor. Appl. Mech. 48(2), 447–463 (2016)

    Google Scholar 

  41. Ross, S.M.: Stochastic Processes. Wiley, New York (1983)

    MATH  Google Scholar 

  42. Resnick, S.I.: Adventures in Stochastic Processes. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  43. Dragomir, S.S.: A survey on Cauchy–Bunyakovsky–Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4(3), 1–142 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Roger, A.H., Charles, R.J.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  45. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)

    Google Scholar 

  46. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice Hall, New Jersey (1976)

    MATH  Google Scholar 

  47. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley-Interscience, Hoboken (1987)

    MATH  Google Scholar 

  48. Zienkiewicz, O.C.: The Finite Element Method, 3rd edn. McGraw-hill, London (1977)

    MATH  Google Scholar 

  49. Rao, S.S., Yap, F.F.: Mechanical Vibrations. Addison-Wesley, New York (1995)

    Google Scholar 

  50. Guan, F.J., Han, X., Jiang, C.: Uncertain optimization of engine crankshaft using interval methods. Eng. Mech. 25(9), 198–202 (2008)

    Google Scholar 

  51. Wang, L.G., Hu, D.B.: FEM analysis 368Q crankshaft fatigue strength and some discuss on relative problems. Trans. CSICE 18(3), 270–274 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Liu, N.Y. & Ni, B.Y. A Monte Carlo simulation method for non-random vibration analysis. Acta Mech 228, 2631–2653 (2017). https://doi.org/10.1007/s00707-017-1842-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1842-3

Navigation