Skip to main content
Log in

The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nanocomposites have shown excellent mechanical and physical properties; however, their properties are seriously affected by the nucleation of misfit defects at the interfaces between the inclusion and the matrix. Based on the energy rule, the nucleation criteria for a misfit extended dislocation dipole (MEDD) and a misfit screw dislocation dipole (MSDD) are analytically given. Furthermore, we systematically investigate the effects of the geometrical and mechanical factors, such as the radius of the inclusion, the misfit strain, the shear modulus ratio and the stacking fault energy, on the competitive nucleation between MEDD and MSDD. It is found that the stacking fault energy has a decisive effect on the competitive nucleation of MEDD and MSDD. The critical stacking fault energy for the nucleation transferring from MSDD to MEDD increases with the increase of the shear modulus ratio and decrease of the misfit strain, while it is almost not affected by the inclusion radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karnesky, R.A., Meng, L., Dunand, D.C.: Strengthening mechanisms in aluminum containing coherent Al\(_{3}\)Sc precipitates and incoherent Al\(_{2}\)O\(_{3}\) dispersoids. Acta Mater. 55(4), 1299–1308 (2007)

    Article  Google Scholar 

  2. Chen, J., Costan, E., Van Huis, M., Xu, Q., Zandbergen, H.: Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312(5772), 416–419 (2006)

    Article  Google Scholar 

  3. Van der Merwe, J.H.: Misfit dislocation generation in epitaxial layers. Crit. Rev. Solid State Mater. Sci. 17(3), 187–209 (1991)

    Article  Google Scholar 

  4. Jain, S., Harker, A., Cowley, R.: Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems. Philos. Mag. A 75(6), 1461–1515 (1997)

    Article  Google Scholar 

  5. Ovid’ko, I.A.: Relaxation mechanisms in strained nanoislands. Phys. Rev. Lett. 88(4), 046103 (2002)

    Article  Google Scholar 

  6. Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Ovid ko, I., Sheinerman, A.: Nanoparticles as dislocation sources in nanocomposites. J. Phys. Condens. Matter 18(19), L225 (2006)

    Article  Google Scholar 

  8. Aifantis, K.E., Kolesnikova, A.L., Romanov, A.E.: Nucleation of misfit dislocations and plastic deformation in core/shell nanowires. Philos. Mag. 87(30), 4731–4757 (2007). doi:10.1080/14786430701589350

    Article  Google Scholar 

  9. Appel, F., Fischer, F., Clemens, H.: Precipitation twinning. Acta Mater. 55(14), 4915–4923 (2007)

    Article  Google Scholar 

  10. Freund, L., Gosling, T.: Critical thickness condition for growth of strained quantum wires in substrate V-grooves. Appl. Phys. Lett. 66(21), 2822–2824 (1995)

    Article  Google Scholar 

  11. Gosling, T.J., Freund, L.B.: A critical thickness condition for triangular strained quantum wires grown in V-grooves on a patterned substrate. Acta Mater. 44(1), 1–13 (1996). doi:10.1016/1359-6454(95)00173-X

    Article  Google Scholar 

  12. Colin, J., Grilhé, J.: Surface instability and delamination of epitaxially stressed bilayers. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 82(13), 2609–2621 (2002). doi:10.1080/01418610210152800

    Google Scholar 

  13. Fang, Q., Liu, Y., Chen, J.: Misfit dislocation dipoles and critical parameters of buried strained nanoscale inhomogeneity. Appl. Phys. Lett. 92(12), 121923 (2008)

    Article  Google Scholar 

  14. Fang, Q., Liu, Y., Wen, P.: Dipole of edge misfit dislocations and critical radius conditions for buried strained cylindrical inhomogeneity. Philos. Mag. 89(20), 1585–1595 (2009)

    Article  Google Scholar 

  15. Kolesnikova, A.L., Romanov, A.E.: Misfit dislocation loops and critical parameters of quantum dots and wires. Philos. Mag. Lett. 84(8), 501–506 (2004). doi:10.1080/09500830412331305274

    Article  Google Scholar 

  16. Gutkin, M.Y., Ovid’ko, I., Sheinerman, A.: Misfit dislocations in wire composite solids. J. Phys. Condens. Matter 12(25), 5391 (2000)

    Article  Google Scholar 

  17. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005). doi:10.1016/j.jmps.2005.02.009

    Article  MathSciNet  MATH  Google Scholar 

  18. Quang, H.L., He, Q.C.: Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases. J. Mech. Phys. Solids 55(9), 1899–1931 (2007). doi:10.1016/j.jmps.2007.02.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K., Benusiglio, A.: Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects. Int. J. Solids Struct. 47(3–4), 407–418 (2010). doi:10.1016/j.ijsolstr.2009.10.007

    Article  MATH  Google Scholar 

  20. Zhao, Y., Fang, Q., Liu, Y.: Edge misfit dislocations in core–shell nanowire with surface/interface effects and different elastic constants. Int. J. Mech. Sci. 74, 173–184 (2013)

    Article  Google Scholar 

  21. Fan, H., Wang, G.F.: Screw dislocation interacting with imperfect interface. Mech. Mater. 35(10), 943–953 (2003). doi:10.1016/S01676636(02)00309-5

    Article  Google Scholar 

  22. Wang, X.: Interaction between an edge dislocation and a circular inclusion with an inhomogeneously imperfect interface. Mech. Res. Commun. 33(1), 17–25 (2006). doi:10.1016/j.mechrescom.2005.05.002

    Article  MATH  Google Scholar 

  23. Wang, X., Pan, E., Roy, A.K.: New phenomena concerning a screw dislocation interacting with two imperfect interfaces. J. Mech. Phys. Solids 55(12), 2717–2734 (2007). doi:10.1016/j.jmps.2007.03.017

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang, Q.H., Jin, B., Liu, Y., Liu, Y.W.: Interaction between screw dislocations and inclusions with imperfect interfaces in fiber-reinforced composites. Acta Mech. 203(1), 113–125 (2009). doi:10.1007/s00707-008-0038-2

    Article  MATH  Google Scholar 

  25. Sudak, L.J.: On the interaction between a dislocation and a circular inhomogeneity with imperfect interface in antiplane shear. Mech. Res. Commun. 30(1), 53–59 (2003). doi:10.1016/S0093-6413(02)00352-X

    Article  MATH  Google Scholar 

  26. Wang, X., Schiavone, P.: Interaction between an edge dislocation and a circular inhomogeneity with a mixed-type imperfect interface. Arch. Appl. Mech. (2016). doi:10.1007/s00419-016-1178-9

    Google Scholar 

  27. Fang, Q.H., Liu, Y.W.: Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scr. Mater. 55(1), 99–102 (2006). doi:10.1016/j.scriptamat.2006.03.026

    Article  Google Scholar 

  28. Fang, Q.H., Liu, Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54(16), 4213–4220 (2006). doi:10.1016/j.actamat.2006.05.012

    Article  Google Scholar 

  29. Liu, Y.W., Fang, Q.H.: Analysis of a screw dislocation inside an inhomogeneity with interface stress. Mater. Sci. Eng. A 464(1–2), 117–123 (2007). doi:10.1016/j.msea.2007.02.057

    Article  Google Scholar 

  30. Fang, Q.H., Liu, Y.W., Jin, B., Wen, P.H.: Interaction between a dislocation and a core–shell nanowire with interface effects. Int. J. Solids Struct. 46(6), 1539–1546 (2009). doi:10.1016/j.ijsolstr.2008.11.026

    Article  MATH  Google Scholar 

  31. Luo, J., Xiao, Z.M.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47(9), 883–893 (2009). doi:10.1016/j.ijengsci.2009.05.007

    Article  Google Scholar 

  32. Shodja, H.M., Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Y.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49(5), 759–770 (2012). doi:10.1016/j.ijsolstr.2011.11.013

    Article  Google Scholar 

  33. Wang, X., Schiavone, P.: Interaction of a screw dislocation with a nano-sized, arbitrarily shaped inhomogeneity with interface stresses under anti-plane deformations. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2170), 20140313 (2014)

    Article  Google Scholar 

  34. Hirth, J.P., Lothe, J.: Theory of Dislocations, second edn. Wiley, New York (1982)

    MATH  Google Scholar 

  35. Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925), 349–352 (2009). doi:10.1126/science.1159610

    Article  Google Scholar 

  36. Lu, L., Lu, K.: Metallic materials with nano-scale twins. Jinshu Xuebao/Acta Metall. Sin. 46(11), 1422–1427 (2010). doi:10.3724/sp.j.1037.2010.00462

    Article  MathSciNet  Google Scholar 

  37. Lu, L., Chen, X., Huang, X., Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323(5914), 607–610 (2009). doi:10.1126/science.1167641

    Article  Google Scholar 

  38. Zhang, X., Romanov, A., Aifantis, E.C.: A simple physically based phenomenological model for the strengthening/softening behavior of nanotwinned copper. J. Appl. Mech. 82(12), 121005 (2015)

    Article  Google Scholar 

  39. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010). doi:10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  40. Zou, J., Cockayne, D.: Theoretical consideration of misfit dislocation nucleation by partial dislocations in [001] strained-layer heterostructures. J. Appl. Phys. 74(2), 925–930 (1993)

    Article  Google Scholar 

  41. Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300(5623), 1275–1277 (2003). doi:10.1126/science.1083727

    Article  Google Scholar 

  42. Asaro, R.J., Krysl, P., Kad, B.: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83(12), 733–743 (2003)

    Article  Google Scholar 

  43. Rockenberger, J., Tröger, L., Rogach, A.L., Tischer, M., Grundmann, M., Eychmüller, A., Weller, H.: The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys. 108(18), 7807–7815 (1998)

    Article  Google Scholar 

  44. Dundurs, J., Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12(3), 177–189 (1964)

    Article  MathSciNet  Google Scholar 

  45. Dundurs, J.: Elastic interaction of dislocations with inhomogeneities. Math. Theory Dislocat, 70–115 (1969)

  46. Smith, E.: The interaction between dislocations and inhomogeneities—I. Int. J. Eng. Sci. 6(3), 129–143 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, J., Kang, G. et al. The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites. Acta Mech 228, 2541–2554 (2017). https://doi.org/10.1007/s00707-017-1840-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1840-5

Navigation