Skip to main content
Log in

Description of nonlinear thermal effects by means of a two-component Cosserat continuum

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A physical object under consideration is a conventional material that has elastic and thermodynamic properties. To describe thermal processes in the material, we use a mechanical model different from the models that are usually used in the kinetic theory and statistical physics. Our method of thermal processes modeling is based on an idea to introduce a continuum with an internal structure and to consider mechanical quantities associated with the additional degrees of freedom as analogies of thermodynamic quantities. In this way, we suggest mechanical interpretations of temperature and entropy, which can be a foundation for the description of thermal processes within the framework of continuum mechanics and by using the methods of continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, Chichester (1998)

    MATH  Google Scholar 

  2. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas Publishers, Springfield (1955)

    MATH  Google Scholar 

  3. De Groot, S.R.: Thermodynamics of Irreversible Processes. North Holland, Amsterdam (1951)

    MATH  Google Scholar 

  4. Gyarmati, I.: Introduction to Irreversible Thermodynamics. MTI, Budapest (1960)

    Google Scholar 

  5. Bachareva, I.F.: Nonlinear irreversible thermodynamics. Saratov University Press, Saratov (1976) (in Russian)

  6. Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 4, pp. 91–193. North-Holland, Amsterdam (1963)

    Google Scholar 

  7. Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  8. Truesdell, C.: The Elements of Continuum Mechanics. Springer, New York (1965)

    MATH  Google Scholar 

  9. Truesdell, C.: A First Course in Rational Continuum Mechanics. The John Hopkins University, Baltimore (1972)

    Google Scholar 

  10. Palmov, V.A.: Vibrations of Elastoplastic Bodies. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  11. Kovalenko, A.D.: Thermoelasticity. Naukova Dumka, Kiev (1975). (in Russian)

  12. Kuvyrkin, G.N.: Thermomechanics of solids under high-intensity loading. MSTU Publishing House, Moscow (1993) (in Russian)

  13. Zarubin, V.S., Kuvyrkin, G.N.: Mathematical Models of Thermomechanics. Fizmatlit, Moscow (2002). (in Russian)

  14. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  15. Zhilin, P.A.: Applied Mechanics. Foundations of Shells Theory. Tutorial Book. Politechnic University Publishing House, St. Petersburg (2006). (in Russian)

  16. Zhilin, P.A.: Applied Mechanics. The Theory of Thin Elastic Rods. Polytechnic University Publishing House, St. Petersburg (2007). (in Russian)

  17. Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (in Russian)

  18. Nowacki, W.: Dynamic Problems of Thermoelasticity. Noordhoof International, Leyden (1976)

    MATH  Google Scholar 

  19. Sedov, L.I.: Continuum Mechanics, vol. 1. Nauka, Moscow (1970). (in Russian)

  20. Kupradze, V.D. (ed.): Three-Dimensional Problems of the Theory of Elasticity. Nauka, Moscow (1976). (in Russian)

  21. Pobedrya, B.E., Georgievskii, D.V.: Fundamentals of Continuum Mechanics. Fizmatlit, Moscow (2006). (in Russian)

  22. Müller, I., Müller, W.H.: Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo. Springer, Berlin (2009)

    MATH  Google Scholar 

  23. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  24. Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. Trans. ASME 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  25. Truesdell, C.: Rational Thermodynamics. Springer, New Vork (1984)

    Book  MATH  Google Scholar 

  26. Müller, I., Weiss, W.: Entropy and Energy: A Universal Competition. Springer, Berlin (2005)

    MATH  Google Scholar 

  27. Kuzkin, V.A., Krivtsov, A.M., Jones, R.E., Zimmerman, J.A.: Material frame representation of equivalent stress tensor for discrete solids. Phys. Mesomech. 18, 13–23 (2015)

    Article  Google Scholar 

  28. Maxwell, J.C.: Illustrations of the dynamical theory of gases. In: Niven, W.D. (ed.) The Scientific Papers of James Clerk Maxwell, vol. 1. Dover Publications, New York (1860)

  29. Warner Jr., H.R.: Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fund. 11, 379–387 (1972)

    Article  Google Scholar 

  30. Giesekus, H.: Constitutive equations for polymer fluids based on the concept of configuration-dependent molecular mobility: a generalized mean-configuration model. J. Non-Newton. Fluid Mech. 17, 349–372 (1985)

    Article  Google Scholar 

  31. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Fluid Mechanics, vol. 1. Wiley, New York (1987)

  32. Jehring, L.: Kinetic theory of a gas with internal degrees of freedom. J. Appl. Math. Mech. 64, 529–536 (1984)

    MATH  Google Scholar 

  33. Rosenberger, F.: Die Geschichte der Physik. Dritter Teil. Geschichte der Physik in den letzten hundert Jahren. Fr. Vieweg und Sohn, Braunschweig (1887)

  34. Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910)

    MATH  Google Scholar 

  35. Gliozzi, M.: Storia della fisica. Storia delle scienze, vol. 2. UTET, Torino (1965)

  36. Müller, I.: A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin (2007)

    MATH  Google Scholar 

  37. Grad, H.: Principles of the kinetic theory of gases. In: Flügge, V. (ed.) Handbuch der Physik, vol. XII, pp. 205–294. Springer, Berlin (1958)

    Google Scholar 

  38. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  39. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1975)

    MATH  Google Scholar 

  40. Kremer, G.M.: An introduction to the Boltzmann equation and transport processes in gases. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  41. Euler, L.: Dissertatio de igne, in qua eius natura et proprietates explicantur. Opera Omnia: Series 3, vol.10 (1738)

  42. Predvoditelev, A.S., Spasskiy, B.I. (eds.).: The development of physics in Russia (collection of articles), vol. 1. Publishing House “Prosvyaschenie”. Moscow (1970) (in Russian)

  43. Barabanov, N.N.: Leonhard Euler and his contribution to the development of physics: the 300-th anniversary of the scientist. Physics N 5, 829, 40–44 (2007) (in Russian)

  44. Lomonosov, M.V.: Complete works in 10 volumes, vol. 2. Works on physics and chemistry. 1747–1752 years. Publishing House of the Academy of Sciences of USSR. Moscow–Leningrad (1951) (in Russian)

  45. Thompson, B.: Philosophical Transactions, LXXI, (1781); Philosophical Transactions, LXXXVIII (1798)

  46. Davy, H.: Elements of chemical philosophy, London, p. 93 and next (1812)

  47. Young, T.: Lectures on natural philosophy. London I, 651–657 (1807)

  48. Cauchy, A.L.: Met. De l’Acad. XVIII, 1839 (published in 1842), p. 153

  49. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)

    Article  MATH  Google Scholar 

  50. Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)

    Chapter  Google Scholar 

  51. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012)

    Google Scholar 

  52. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two component Cosserat continuum. Acta Mech. 225, 757–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ivanova, E.A., Vilchevskaya, E.N.: Micropolar continuum in spatial description. Contin. Mech. Thermodyn. 28, 1759–1780 (2016)

  54. Lord Kelvin (Sir William Thomson). On vortex atoms. Hermann: Proceedings of the Royal Society of Edinburgh, vol. VI, pp. 94–105 (1867). Reprinted in Philos. Mag. vol. XXXIV, pp. 15–24 (1867)

  55. Zhilin, P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

  56. Altenbach, H., Naumenko, K., Zhilin, P.A.: A note on transversely-isotropic invariants. Z. Angew. Math. Mech. 86, 162–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shashkov, A.G., Bubnov, V.A., Yanovsky, S. Yu.: Wave phenomena of heat conductivity. Publishing House “Editorial URSS”. Moscow (2004) (in Russian)

  58. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description–what are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures. Springer, Berlin (2016)

    Google Scholar 

  59. Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15, 539–570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  61. Loitsyansky, L.G.: Fluid Mechanics. Nauka, Moscow (1987)

    Google Scholar 

  62. Daily, J., Harleman, D.: Fluid Dynamics. Addison-Wesley, Massachusetts (1966)

    MATH  Google Scholar 

  63. Ivanova, E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhilin, P.A.: Rigid body oscillator: a general model and some results. Acta Mech. 142, 169–193 (2000)

    Article  MATH  Google Scholar 

  65. Campo, A.: Estimate of the transient conduction of heat in materials with linear thermal properties based on the solution for constant properties. Heat Mass Transf. 17, 1–9 (1982)

    Google Scholar 

  66. Jordan, A., Khaldi, S., Benmouna, M., Borucki, A.: Study of non-linear heat transfer problems. Revue de Physique Appliquee. 22, 101–105 (1987)

    Article  Google Scholar 

  67. Polyanin, A.D., Zhurov, A.I., Vyaz’min, A.V.: Exact solutions of nonlinear heat- and mass-transfer equations. Theor. Found. Chem. Eng. 34, 403–415 (2000)

    Article  Google Scholar 

  68. Ebadian, A., Darania, P.: Study of exact solutions of nonlinear heat equations. Comput. Appl. Math. 27, 107–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Habibi, M., Oloumi, M., Hosseinkhani, H., Magidi, S.: Numerical investigation into the highly nonlinear heat transfer equation with bremsstrahlung emission in the inertial confinement fusion plasmas. Contrib. Plasma Phys. 55, 677–684 (2015)

    Article  Google Scholar 

  70. Fong, E., Lam, T.T., Davis, S.E.: Nonlinear heat conduction in isotropic and orthotropic materials with laser heat source. J. Thermophys. Heat Transf. 24, 104–111 (2010)

    Article  Google Scholar 

  71. Grudinin, I., Lee, H., Chen, T., Vahala, K.: Compensation of thermal nonlinearity effect in optical resonators. Opt. Express 19, 7365–7372 (2011)

    Article  Google Scholar 

  72. Chaibi, M., Fernández, T., Mimouni, A., Rodriguez-Tellez, J., Tazón, A., Mediavilla, A.: Nonlinear modeling of trapping and thermal effects on GaAs and GaN MESFET/HEMT devices. Progr. Electromagn. Res. 124, 163–186 (2012)

    Article  Google Scholar 

  73. Huang, C., Fan, J., Zhu, L.: Dynamic nonlinear thermal optical effects in coupled ring resonators. AIP Adv. 2, 1–8 (2012)

    Google Scholar 

  74. Markides, C.N., Osuolale, A., Solanki, R., Stan, G.-B.V.: Nonlinear heat transfer processes in a two-phase thermofluidic oscillator. Appl. Energy 104, 958–977 (2013)

    Article  Google Scholar 

  75. Mottaghy, D., Rath, V.: Latent heat effects in subsurface heat transport modeling and their impact on palaeotemperature reconstructions. Geophys. J. Int. 164, 236–245 (2006)

    Article  Google Scholar 

  76. LeMesurier, B.: Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete Contin. Dyn. Syst. Ser. S 1, 317–327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  77. Khandekar, C., Pick, A., Johnson, S.G., Rodriguez, A.W.: Radiative heat transfer in nonlinear Kerr media. Phys. Rev. B 91, 1–9 (2015)

    Article  Google Scholar 

  78. Ananth, P., Dinesh, A., Sugunamma, V., Sandeep, N.: Effect of nonlinear thermal radiation on stagnation flow of a Casson fluid towards a stretching sheet. Ind. Eng. Lett. 5, 70–79 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.A. Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech 228, 2299–2346 (2017). https://doi.org/10.1007/s00707-017-1829-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1829-0

Navigation