Skip to main content
Log in

A semi-analytical method for nonlocal buckling and vibration of a single-layered graphene sheet nanomechanical resonator subjected to initial in-plane loads

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A semi-analytical method named Galerkin strip distributed transfer function method (GSDTFM) is employed to solve the buckling and vibration of a single-layered graphene sheet (SLGS) nanomechanical resonator subjected to initial in-plane loads within the framework of the nonlocal Kirchhoff plate theory. The buckling load and the frequency shift are obtained by using the GSDTFM. And the effects of the initial in-plane load, the nonlocal parameter as well as the attached nanoparticle location on the frequency shift are investigated. The simulated results show that the buckling load of the SLGS depends on not only the side length of the SLGS, but also the small scale effects. The impact of the initial in-plane load on the fundamental frequency is significant. The frequency shift at an initial tensile load is larger than that at an initial compressive load. These results are consistent with the previously reported ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  3. Dresselhaus, M.S., Dresselhaus, G., Jorio, A.: Unusual properties and structure of carbon nanotubes. Ann. Rev. Mater. Res. 34, 247–278 (2004)

    Article  MATH  Google Scholar 

  4. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  5. Poncharal, P., Wang, Z.L., Ugarte, D., Heer, W.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

  6. Li, C.Y., Chou, T.W.: Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 5246–5248 (2004)

    Article  Google Scholar 

  7. Li, C.Y., Chou, T.W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)

    Article  Google Scholar 

  8. Shen, Z.B., Tang, H.L., Li, D.K., Tang, G.J.: Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 61, 200–205 (2012)

    Article  Google Scholar 

  9. Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A.: Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 145, 168–172 (2008)

    Article  Google Scholar 

  10. Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A.: Potential application of single-layered graphene sheet as strain sensor. Solid State Commun. 147, 336–340 (2008)

    Article  Google Scholar 

  11. Arash, B., Wang, Q., Duan, W.H.: Detection of gas atoms via vibration of graphenes. Phys. Lett. A 375, 2411–2415 (2011)

    Article  Google Scholar 

  12. Arash, B., Wang, Q.: Detection of gas atoms with graphene sheets. Comput. Mater. Sci. 60, 245–249 (2012)

    Article  Google Scholar 

  13. Eringen, A.C.: On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  14. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  15. Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)

    Article  MATH  Google Scholar 

  16. Sari, M., Al-Kouz, W.: Vibration analysis of non-uniform orthotropic Kirchhoff plates resting on elastic foundation based on nonlocal elasticity theory. Int. J. Mech. Sci. 114, 1–11 (2016)

    Article  Google Scholar 

  17. Lim, M.Z.I.C.W., Zhang, G.: A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. Int. J. Mech. Sci. 94–95, 232–243 (2015)

    Article  Google Scholar 

  18. Sarrami-Foroushani, S., Azhari, M.: Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory. Acta Mech. 227, 721–742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X.F., Tang, G.J., Shen, Z.B., Lee, K.Y.: Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55, 75–84 (2015)

    Article  Google Scholar 

  20. Zhou, S.M., Sheng, L.P., Shen, Z.B.: Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 86, 73–78 (2014)

    Article  Google Scholar 

  21. Bedroud, M., Hosseini-Hashemi, S., Nazemnezhad, R.: Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity. Acta Mech. 224, 2663–2676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sari, M.S.: Free vibration analysis of non-local annular sector Mindlin plates. Int. J. Mech. Sci. 96–97, 25–35 (2015)

    Article  Google Scholar 

  23. Wang, X., Cai, H.: Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes. Acta Mater. 54, 2067–2074 (2006)

    Article  Google Scholar 

  24. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  25. Shen, Z.B., Tang, G.J., Zhang, L., Li, X.F.: Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress. Comput. Mater. Sci. 58, 51–58 (2012)

    Article  Google Scholar 

  26. Heireche, H., Tounsi, A., Benzair, A.: Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology 19, 185703 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Bin Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R.W., Shen, Z.B. & Tang, G.J. A semi-analytical method for nonlocal buckling and vibration of a single-layered graphene sheet nanomechanical resonator subjected to initial in-plane loads. Acta Mech 228, 1725–1734 (2017). https://doi.org/10.1007/s00707-016-1795-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1795-y

Navigation