Skip to main content
Log in

Analysis of bi-dimensional solids with internal unilateral constraint coupled to structural elements with different degree of connection

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper focuses on the modelling and analysis of 2D solids with unilateral material constraints coupled to 1D elements with varying degree of connection between each other. Both bilateral and unilateral geometric constraints are considered, depending on the connection degree. The problem is set up, and the solution is searched for by the numerical implementation of an iterative process leading to its identification; the solution pattern follows a bi-phase minimization procedure that is realized at any step, gradually tending to satisfy all the equations and the inequalities governing the problem. Original numerical codes, specifically compiled for the problem, allow to analyse the influence of the connection on the overall behaviour of the coupled system. The presented problem finds application, as an example, in the study of non-structural brick elements, and it allows to produce some reliable prediction of the overall behaviour of a structure, which includes such elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, D.P.: Strength and behavior of unreinforced masonry elements. In: 10th World Conference on Earthquake Engineering, Madrid, Spain, pp. 3475–3480 (1992)

  2. Alexakis, H., Makris, N.: Minimum thickness of elliptical masonry arches. Acta Mech. 224, 2977–2991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baratta, A., Corbi, I., Corbi, O.: Stress analysis of masonry structures: arches, walls, and vaults. In: D’Ayala, D., Fodde, E. (eds.) Structural Analysis of Historic Constructions: Preserving Safety and Significance, pp.321–329. CRC Press. ISBN 978-0-415-46872-5 (2008)

  4. Baratta, A., Corbi, I., Corbi, O.: Stability of evolutionary brittle-tension 2D solids with heterogeneous resistance. J. Comput. Struct. (2015). doi:10.1016/j.compstruc.2015.10.004

    MATH  Google Scholar 

  5. Baratta, A., Corbi, O.: Heterogeneously resistant elastic-brittle solids under multi-axial stress: fundamental postulates and bounding theorems. Acta Mech. 226, 2077–2087 (2015). doi:10.1007/s00707-015-1299-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazant, Z.P.: Analysis of work-of fracture method for measuring fracture energy of concrete. J. Eng. Mech. ASCE 122, 138–144 (1996)

    Article  Google Scholar 

  7. Furtmüller, T., Adam, C.: Numerical modeling of the in-plane behavior of historical brick masonry walls. Acta Mech. 221, 65–77 (2011). doi:10.1007/s00707-011-0493-z

    Article  MATH  Google Scholar 

  8. Gilbert, M.: Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. In: Arch Bridges ‘07, pp 13–28. Funchal, Madeira (2007)

  9. Hegemeir, G.A., Nunn, R.O., Arya, S.K.: Behavior of concrete masonry under biaxial stress. In: Proceeding of the 1st North American Masonry Conference, pp.1–24. Boulder, Colorado (1978)

  10. Johnson, F.B., Thompson, J.N.: Development of diametric testing procedures to provide a measure of strength characteristics of masonry assemblages. In: Designing, Engineering and Constructing with Masonry Products. Gulf Publishing Co., Houston, TX (1969)

  11. Page, A.W.: An experimental investigation of the biaxial strength of brick masonry. In: Proceedings of the Sixth International Brick Masonry Conference, pp. 3–15. Rome, Italy (1982)

  12. Pau, A., Trovalusci, P.: Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mech. 223, 1455–1471 (2012). doi:10.1007/s00707-012-0662-8

    Article  MATH  Google Scholar 

  13. Pietruszczak, S., Ushaksaraei, R.: Description of inelastic behaviour of structural masonry. Int. J. Solids Struct. 40, 4003–4019 (2003). doi:10.1016/S0020-7683(03)00174-4

    Article  MATH  Google Scholar 

  14. Heyman, J.: The stone skeleton. J. Solids Struct. 2, 249–279 (1966)

    Article  Google Scholar 

  15. Heyman, J., Pippard, A.J.S.: The estimation of the strength of masonry arches. Proc. Inst. Civil Eng. 69, 921–937 (1980). doi:10.1680/iicep.1980.2177

    Google Scholar 

  16. Khludnev, A.M., Kovtunenko, V.A.: Analysis of cracks in solids. Computational Mechanics, Inc., ISBN-10: 185312625X, ISBN-13: 978-1853126253 (2000)

  17. Kooharian, A.: Limit analysis of voussoir (segmental) and concrete arches. J. Am. Concr. Inst. 24, 317–328 (1952)

    Google Scholar 

  18. Baratta, A., Corbi, I., Corbi, O.: Analytical formulation of generalized incremental theorems for 2D no-tension solids. Acta Mech. 226, 2849–2859 (2015). doi:10.1007/s00707-015-1350-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Baratta, A., Corbi, O.: An approach to masonry structural analysis by the no-tension assumption–part II: load singularities, numerical implementation and applications. J. Appl. Mech. Rev. ASME Int. 63, 040803-1/21 (2010). doi:10.1115/1.4002791

    Google Scholar 

  20. Del Piero, G.: Constitutive equation and compatibility of the external loads for linear-elastic masonry materials. Meccanica 24, 150–162 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baratta, A., Corbi, I.: Topology optimization for reinforcement of no-tension structures. Acta Mech. 225, 663–678 (2014). doi:10.1007/s00707-013-0987-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Baratta, A., Corbi, O.: Closed-form solutions for FRP strengthening of masonry vaults. J. Comput. Struct. 147, 244–249 (2015). doi:10.1016/j.compstruc.2014.09.007

    Article  Google Scholar 

  23. Baratta, A., Corbi, I., Corbi, O.: Bounds on the Elastic Brittle solution in bodies reinforced with FRP/FRCM composite provisions. J. Compos. Part B Eng. 68, 230–236 (2015). doi:10.1016/j.compositesb.2014.07.027

    Article  MATH  Google Scholar 

  24. Elmalich, D., Rabinovitch, O.: Nonlinear analysis of masonry arches strengthened with composite materials. J. Eng. Mech. 136, 996–1005 (2010). doi:10.1061/(ASCE)EM.1943-7889.0000140

    Article  Google Scholar 

  25. Shrive, N.G.: The use of fibre reinforced polymers to improve seismic resistance of masonry. Constr. Build. Mater. 20, 269–277 (2006)

    Article  Google Scholar 

  26. Stumpf, H., Le, KCh.: Variational principles of nonlinear fracture mechanics. Acta Mech. 83, 25–37 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottavia Corbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbi, I., Corbi, O. Analysis of bi-dimensional solids with internal unilateral constraint coupled to structural elements with different degree of connection. Acta Mech 228, 607–616 (2017). https://doi.org/10.1007/s00707-016-1723-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1723-1

Navigation