Skip to main content
Log in

Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A nonlinear finite strain and velocity gradient framework is formulated for the Euler–Bernoulli beam theory. This formulation includes finite strain and the strain gradient within the strain energy generalization as well as velocity and its gradient within the kinetic energy generalization. Consequently, static and kinetic internal length scales are developed to capture size effects. The governing equation with initial and boundary conditions is obtained using the variational approach. Free and forced vibration of a simply supported nanobeam is studied for different values of static and kinetic length scales using the method of multiple scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010). doi:10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  2. Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32(3), 1435–1443 (2011). doi:10.1016/j.matdes.2010.08.046

    Article  MATH  Google Scholar 

  3. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011). doi:10.1016/j.ijsolstr.2011.03.006

    Article  Google Scholar 

  4. Attard, M.M.: Finite strain—beam theory. Int. J. Solids Struct. 40(17), 4563–4584 (2003). doi:10.1016/S0020-7683(03)00216-6

    Article  MATH  Google Scholar 

  5. Bakhtiari-Nejad, F., Nazemizadeh, M.: Size-dependent free vibration of nano/microbeams with piezo-layered actuators. Micro Nano Lett. 10(2), 93–98 (2015). doi:10.1049/mnl.2014.0317

    Article  Google Scholar 

  6. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009). doi:10.1098/rspa.2008.0530

    Article  MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972). doi:10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972). doi:10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513–554 (2006). doi:10.1007/s00205-006-0015-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghasemi, A., Taheri-Behrooz, F., Farahani, S., Mohandes, M.: Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected to different boundary conditions. J. Vib. Control, pp. 1–13 (2013). (2014). doi:10.1177/1077546314528965

  11. Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013). doi:10.1016/j.ijengsci.2012.12.001

    Article  MathSciNet  Google Scholar 

  12. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256–1267 (2011). doi:10.1016/j.ijengsci.2011.01.006

    Article  MathSciNet  Google Scholar 

  13. Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope. Appl. Math. Model. 35(12), 5903–5919 (2011). doi:10.1016/j.apm.2011.05.039

    Article  MathSciNet  MATH  Google Scholar 

  14. Karparvarfard, S.M.H., Asghari, M., Vatankhah, R.: A geometrically nonlinear beam model based on the second strain gradient theory. Int. J. Eng. Sci. 91, 63–75 (2015). doi:10.1016/j.ijengsci.2015.01.004

    Article  MathSciNet  Google Scholar 

  15. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487–498 (2009). doi:10.1016/j.ijengsci.2008.08.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003). doi:10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  17. Li, C., Lim, C.W., Yu, J.L.: Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater. Struct. 20(1), 015023 (2010). doi:10.1088/0964-1726/20/1/015023

    Article  Google Scholar 

  18. Li, Y.S., Feng, W.J., Cai, Z.Y.: Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory. Compos. Struct. 115(1), 41–50 (2014). doi:10.1016/j.compstruct.2014.04.005

    Article  Google Scholar 

  19. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008). doi:10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  20. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78. (1964). Retrieved from http://www.springerlink.com/index/N7078N1674172013.pdf

  21. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965). doi:10.1016/0020-7683(65)90006-5

    Article  Google Scholar 

  22. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962). doi:10.1007/BF00253946

    Article  MathSciNet  MATH  Google Scholar 

  23. Mousavi, S.M., Paavola, J., Reddy, J.N.: Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity. Meccanica 50(6), 1537–1550 (2015). doi:10.1007/s11012-015-0105-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Najar, F., El-Borgi, S., Reddy, J.N., Mrabet, K.: Nonlinear nonlocal analysis of electrostatic nanoactuators. Compos. Struct. 120, 117–128 (2015). doi:10.1016/j.compstruct.2014.09.058

    Article  Google Scholar 

  25. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode. J. Vib. Control 16(9), 1321–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  27. Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006). doi:10.1088/0960-1317/16/11/015

    Article  Google Scholar 

  28. Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49(15–16), 2121–2137 (2012). doi:10.1016/j.ijsolstr.2012.04.019

    Article  Google Scholar 

  29. Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11), 1507–1518 (2010). doi:10.1016/j.ijengsci.2010.09.020

    Article  MathSciNet  MATH  Google Scholar 

  30. Roque, C.M.C., Ferreira, A.J.M., Reddy, J.N.: Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 49(9), 976–984 (2011). doi:10.1016/j.ijengsci.2011.05.010

    Article  MATH  Google Scholar 

  31. Shaat, M., Abdelkefi, A.: Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int. J. Mech. Sci. 101–102, 280–291 (2015). doi:10.1016/j.ijmecsci.2015.08.002

    Article  Google Scholar 

  32. Şimşek, M.: Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. Part B Eng. 56, 621–628 (2014). doi:10.1016/j.compositesb.2013.08.082

    Article  Google Scholar 

  33. Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012). doi:10.1016/j.ijengsci.2011.11.011

    Article  MathSciNet  Google Scholar 

  34. Vatankhah, R., Kahrobaiyan, M.H., Alasty, A., Ahmadian, M.T.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Model. 37(18–19), 8363–8382 (2013). doi:10.1016/j.apm.2013.03.046

    Article  MathSciNet  Google Scholar 

  35. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29(4), 591–599 (2010). doi:10.1016/j.euromechsol.2009.12.005

    Article  Google Scholar 

  36. Wang, B., Zhou, S., Liu, M., Zhao, J.: A size-dependent Reddy–Levinson beam model based on a strain gradient elasticity theory. Meccanica 49, 1427–1441 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yaghoubi, S.T., Mousavi, S.M., Paavola, J.: Strain and velocity gradient theory for higher-order shear deformable beams. Arch. Appl. Mech. 85(7), 877–892 (2015). doi:10.1007/s00419-015-0997-4

    Article  MATH  Google Scholar 

  38. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002). doi:10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami El-Borgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, R., Mousavi, S.M. & El-Borgi, S. Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory. Acta Mech 227, 2657–2670 (2016). https://doi.org/10.1007/s00707-016-1646-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1646-x

Keywords

Navigation