Skip to main content
Log in

Analytical treatment of the nonlinear free vibration of cylindrical nanoshells based on a first-order shear deformable continuum model including surface influences

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Surface stresses can significantly affect the mechanical behavior of structures when they are scaled down to deep submicron dimensions. The Gurtin–Murdoch surface elasticity theory has the capability to capture the size-dependent behavior of nanostructures due to the surface stress effect in a continuum manner. The present work is concerned with the application of Gurtin–Murdoch theory to the nonlinear free vibration analysis of circular cylindrical nanoshells with considering surface stress and shear deformation effects. The nonlinear governing equations of motion together with the corresponding boundary conditions are firstly derived using Hamilton’s principle, the first-order shear deformation shell theory and von Kármán’s assumption. An analytical approach is then presented to solve the nonlinear free vibration problem. Selected numerical results are given to illustrate the effects of surface energy on the nonlinear free vibration behavior of shear deformable nanoshells with different material and geometrical parameters. It is shown that there is a large difference between the results of Gurtin–Murdoch theory and those of its classical counterpart for very thin nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar C.S.S.R.: Nanomaterials for Biosensors. Wiley, Weinheim (2007)

    Google Scholar 

  2. Zabow G., Dodd S.J., Moreland J., Koretsky A.P.: The fabrication of uniform cylindrical nanoshells and their use as spectrally tunable MRI contrast agents. Nanotechnology 20, 385301 (2009)

    Article  Google Scholar 

  3. Zabow G., Dodd S., Moreland J., Koretsky A.: Multispectral MRI contrast through cylindrical nanoshell agents. Proc. Int. Soc. Mag. Reson. Med. 18, 38 (2010)

    Google Scholar 

  4. Zhu J., Li J.-J., Zhao J.-W.: Obtain quadruple intense plasmonic resonances from multilayered gold nanoshells by silver coating: application in multiplex sensing. Plasmonics 8, 1493 (2013)

    Article  Google Scholar 

  5. Advances in Nanotechnology Research and Application, Scholarly Editions, General Editor: Ashton Acton, Q. (2013 Edition)

  6. Chen Z., Zhang C., Wu Q., Li K., Tan L.: Application of triangular silver nanoplates for colorimetric detection of H2O2. Sens. Actuators B Chem. 220, 314–317 (2015)

    Article  Google Scholar 

  7. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 6, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  8. Koiter W.T.: Couple stresses in the theory of elasticity. Proc. Koninklijke Nederlandse Akademie van Wetenschappen (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Mindlin R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  10. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  11. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  12. Ansari R., Faghih Shojaei M., Rouhi H.: Small-scale Timoshenko beam element. Eur. J. Mech. A Solids 53, 19–33 (2015)

    Article  MathSciNet  Google Scholar 

  13. Akgöz B., Civalek Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zeighampour H., Tadi Beni Y.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ansari R., Faghih Shojaei M., Ebrahimi F., Rouhi H.: A non-classical Timoshenko beam element for the postbuckling analysis of microbeams based on Mindlin’s strain gradient theory. Arch. Appl. Mech. 85, 937–953 (2015)

    Article  Google Scholar 

  16. Maani Miandoab E., Yousefi-Koma A., Nejat Pishkenari H.: Poly silicon nanobeam model based on strain gradient theory. Mech. Res. Commun. 62, 83–88 (2014)

    Article  Google Scholar 

  17. Ansari R., Faghih Shojaei M., Mohammadi V., Rouhi H., Bazdid-Vahdati M.: Triangular Mindlin microplate element. Comput. Methods Appl. Mech. Eng. 295, 56–76 (2015)

    Article  MathSciNet  Google Scholar 

  18. Karimi Zeverdejani M., Tadi Beni Y.: The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr. Appl. Phys. 13, 1566–1576 (2013)

    Article  Google Scholar 

  19. Akgöz B., Civalek Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Akgöz B., Civalek Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)

    Article  MATH  Google Scholar 

  21. Akgöz B., Civalek Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, G.Y., Gao, X.-L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. doi:10.1007/s00707-015-1478-0

  24. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  25. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  26. Rouhi H., Ansari R.: Nonlocal analytical Flügge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. Nano 7, 1250018 (2012)

    Article  Google Scholar 

  27. Ansari R., Rouhi H., Sahmani S.: Free vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models. J. Vib. Control 20, 670–678 (2014)

    Article  MathSciNet  Google Scholar 

  28. Ansari R., Rouhi H., Sahmani S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  29. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  31. Gibbs J.W.: The Scientific Papers of J. Willard Gibbs. Longmans-Green, London (1906)

    MATH  Google Scholar 

  32. Cammarata R.C.: Surface and interface stress effects on interfacial and nanostructured materials. Mater. Sci. Eng. A 237, 180–184 (1997)

    Article  Google Scholar 

  33. Li Y., Chen C., Fang B., Zhang J., Song J.: Postbuckling of piezoelectric nanobeams with surface effects. Int. J. Appl. Mech. 4, 1250018 (2012)

    Article  Google Scholar 

  34. Yan Z., Jiang L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A 468, 3458–3475 (2012)

    Article  MathSciNet  Google Scholar 

  35. Chiu M.S., Chen T.: Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Phys. E 54, 149–156 (2013)

    Article  Google Scholar 

  36. Sharabiani P.A., Haeri Yazdi M.R.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B 45, 581–586 (2013)

    Article  Google Scholar 

  37. Malekzadeh P., Shojaee M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. Part B 52, 84–92 (2013)

    Article  Google Scholar 

  38. Shaat M., Mahmoud F.F., Gao X.L., Faheem A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  39. Kiani K.: Surface effect on free transverse vibrations and dynamic instability of current-carrying nanowires in the presence of a longitudinal magnetic field. Phys. Lett. A 378, 1834–1840 (2014)

    Article  MathSciNet  Google Scholar 

  40. Ghorbanpour Arani A., Roudbari M.A.: Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Phys. B 452, 159–165 (2014)

    Article  Google Scholar 

  41. Ansari R., Mohammadi V., Faghih Shojaei M., Gholami R., Rouhi H.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A Solids 45, 143–152 (2014)

    Article  MathSciNet  Google Scholar 

  42. Cheng Ch.-H., Chen T.: Size-dependent resonance and buckling behavior of nanoplates with high-order surface stress effects. Phys. E 67, 12–17 (2015)

    Article  Google Scholar 

  43. Li Y.S., Pan E.: Bending of a sinusoidal piezoelectric nanoplate with surface effect. Compos. Struct. 136, 45–55 (2015)

    Article  Google Scholar 

  44. Farrokhabadi A., Mohebshahedin A., Rach R., Duan J.S.: An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects. Phys. E 75, 202–209 (2016)

    Article  Google Scholar 

  45. Rouhi H., Ansari R., Darvizeh M.: Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Appl. Math. Model. 40, 3128–3140 (2016)

    Article  MathSciNet  Google Scholar 

  46. Zeighampour H., Tadi Beni Y., Mehralian F.: A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech. 226, 2607–2629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zeighampour H., Tadi Beni Y.: A shear deformable cylindrical shell model based on couple stress theory. Arch. Appl. Mech. 85, 539–553 (2015)

    Article  MATH  Google Scholar 

  48. Tadi Beni Y., Mehralian F., Razavi H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Article  Google Scholar 

  49. Zeighampour H., Tadi Beni Y.: Analysis of conical shells in the framework of coupled stresses theory. Int. J. Eng. Sci. 81, 107–122 (2014)

    Article  MathSciNet  Google Scholar 

  50. Lu P., He L.H., Lee H.P., Lu C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

    Article  MATH  Google Scholar 

  51. Sokolnikoff I.S., Specht R.D.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  52. Sheng G.G., Wang X.: An analytical study of the non-linear vibrations of functionally graded cylindrical shells subjected to thermal and axial loads. Compos. Struct. 97, 261–268 (2013)

    Article  Google Scholar 

  53. Rafiee M., Mohammadi M., Sobhani Aragh B., Yaghoobi H.: Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, part I: theory and analytical solutions. Compos. Struct. 103, 179–187 (2013)

    Article  Google Scholar 

  54. Nayfeh A.H.: Perturbation Methods. Wiley, New York (2007)

    Google Scholar 

  55. Nayfeh A.H.: Nonlinear Oscillation. Wiley, New York (1979)

    Google Scholar 

  56. Loy C.T., Lam K.Y., Reddy J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41, 309–324 (1999)

    Article  MATH  Google Scholar 

  57. Du C., Li Y., Jin X.: Nonlinear forced vibration of functionally graded cylindrical thin shells. Thin-Walled Struct. 78, 26–36 (2014)

    Article  Google Scholar 

  58. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  59. Zhu R., Pan E., Chung P.W., Cai X., Liew K.M., Buldum A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21, 906–911 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, H., Ansari, R. & Darvizeh, M. Analytical treatment of the nonlinear free vibration of cylindrical nanoshells based on a first-order shear deformable continuum model including surface influences. Acta Mech 227, 1767–1781 (2016). https://doi.org/10.1007/s00707-016-1595-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1595-4

Keywords

Navigation