Skip to main content
Log in

Relationships between the optimum parameters of four projectile motions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

It has recently been shown that the range and the optimum angle for both projectile motion with linear drag and projectile motion with quadratic drag but low trajectories can be expressed in terms of the Lambert W function. In this article, we show that this is also true for two other projectile motions. As a consequence of these results, simple relations exist between the parameters characterizing all four motions. These relations allow us to obtain the expressions for the optimum parameters of one projectile motion, knowing the optimum parameters of any of the others. Also, we show that some well-known results for projectiles in a vacuum are obtained when certain limits are taken on the expressions for the optimum parameters of any one of the four projectile motions.

…Its curious; there’s a sort of unity among problems, don’t you think? There’s only about a half dozen of them that are really different.

Florence Nightingale David [1, p. 159]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quoted in Salsburg, D.: The Lady Tasting Tea. W. H. Freeman/Owl Book, New York (2002)

  2. Dugas R.: A History of Mechanics. Dover, New York (1988)

    MATH  Google Scholar 

  3. Thuillier P.: De lˊart à la science: la découverte de la trajectoire parabolique. La Recherche 18, 1082–1089 (1987)

    Google Scholar 

  4. Galilei G.: Two New Sciences. Translated from the Italian and Latin into English by Henry Crew and Alfonso de Salvio. The MacMillan Company, New York (1914)

    MATH  Google Scholar 

  5. Drake S., MacLachlan J.: Galileoˊs discovery of the parabolic trajectory. Sci. Am. 232, 102–110 (1975)

    Article  Google Scholar 

  6. Naylor R.H.: Galileoˊs theory of projectile motion. Isis 71, 550–570 (1980)

    Article  MathSciNet  Google Scholar 

  7. Hall A.R.: Ballistics in the Seventeenth Century. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  8. Calero, J.S.: The Genesis of Fluid Mechanics 1640–1780, pp. 49, 57–63. Springer, Dordrecht (2008)

  9. Huygens C.: Discours de la cause de la pesanteur in Oeuvres complètes. Tome XXI, Cosmologie. In: Vollgraff, J.A. (eds) Societé Hollandaise des Sciences, pp. 451–499. Martinus Nijhoff, La Haye (1944)

    Google Scholar 

  10. Newton, I.: The Principia. Prometheus Books, New York (1995); (a) Book II, Proposition IV, Problem II, Cor. 2; (b) ibid. Scholium; (c) Proposition X, Problem III, Scholium

  11. Bernoulli, J.: Operatio analytica per quam deducta est ejusdem solutio, qua extat in Actis Lips. 1719 m. Maji, problematis de invenienda curva, qua deferibitur a projectili gravi in medio resistente. Acta Eruditorum 228-230 (1721). Reprinted in Opera Omnia II. Sumptivus Marci-Michaelis Bousquet & sociorum, Lausana (1742), pp. 513–516. https://books.google.com/books/about/Opera_omnia.html?id=viWIu8AU3JcC. Accessed 17 July 2013

  12. Bashforth, F.: A Mathematical Treatise on the Motion of Projectiles, Chap. 4, pp. 45-48. Asher & Co., London (1873)

  13. Euler, L.: Recherches sur la veritable courbe qui décrivent les corps jettés dans l’air ou dans un autre fluide quelconque. Mémoires de l’académie des sciences de Berlin, 9 321-362 (1753). Reprinted in Opera Omnia Series II vol 14, pp. 413-447, [E217]. Available at www.EulerArchive.org. Accessed 17 July 2013

  14. Sandifer C.E.: How Euler Did It, pp. 213–218. MAA, USA (2007)

    MATH  Google Scholar 

  15. Poisson, S.D.: A Treatise of Mechanics, Vol. 2, Ch. VI.I, p. 321. Longman and Co., London (1842)

  16. Deakin M.A.B., Troup G.J.: Approximate trajectories for projectile motion with air resistance. Am. J. Phys. 66, 34–37 (1998)

    Article  Google Scholar 

  17. Yabushita K., Yamashita M., Tsuboi K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A Math. Theor. 40, 8403–8416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Price R.H., Romano J.D.: Aim high and go far-Optimal projectile launch angles greater than \({45^{\circ}}\). Am. J. Phys. 66, 109–113 (1998)

    Article  Google Scholar 

  19. Hayen J.C.: Projectile motion in a resistant medium Part I: exact solution and properties. Int. J. Nonlinear Mech. 38, 357–369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hayen J.C.: Projectile motion in a resistant medium Part II: approximate solution and estimates. Int. J. Nonlinear Mech. 38, 371–380 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parker G.W.: Projectile motion with air resistance quadratic in the speed. Am. J. Phys. 45, 606–610 (1977)

    Article  Google Scholar 

  22. Hall A.R., Grattan-Guinness I.: Ballistics and projectiles. In: Grattan-Guinness, I. (eds) Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, vol. 2, The Johns Hopkins University Press, Baltimore (1994)

    Google Scholar 

  23. MacMillan W.D.: Statics and the Dynamics of a Particle, pp. 254–258. McGraw-Hill, New York (1927)

    Google Scholar 

  24. Symon K.R.: Mechanics, 2nd edn, pp. 112. Addison-Wesley, Reading (1960)

    Google Scholar 

  25. Packel E.W, Yuen D.S.: Projectile motion with resistance and the Lambert W function. Coll. Math. J. 35, 337–350 (2004)

    Article  MathSciNet  Google Scholar 

  26. Warburton R.D.H., Wang J.: Analysis of asymptotic projectile motion with air resistance using the Lambert W function. Am. J. Phys. 72, 1404–1407 (2004)

    Article  Google Scholar 

  27. Stewart S.M.: Linear resisted projectile motion and the Lambert W function. Am. J. Phys. 73, 199 (2005)

    Article  Google Scholar 

  28. Morales D.A.: Exact expressions for the range and the optimal angle of a projectile with linear drag. Can. J. Phys. 83, 67–83 (2005)

    Article  Google Scholar 

  29. Morales D.A.: A generalization on projectile motion with linear resistance. Can. J. Phys. 89, 1233–1250 (2011)

    Article  Google Scholar 

  30. Hu H., Zhao Y.P., Guo Y.J., Zheng M.Y.: Analysis of linear resisted projectile motion using the Lambert W function. Acta Mech. 223, 441–447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boltianski V.G.: La Envolvente. Editorial Mir, Moscow (1977)

    MATH  Google Scholar 

  32. Greenwood D.T.: Principles of Dynamics, pp. 67–70. Prentice-Hall, Englewood Cliffs (1965)

    Google Scholar 

  33. Baće M., Ilijić S., Narančić Z., Bistričić L.: The envelope of projectile trajectories. Eur. J. Phys. 23, 637–642 (2002)

    Article  MATH  Google Scholar 

  34. Macklin P.A.: Projectile motion maxima—an omnipresent orthogonality. Am. J. Phys. 55, 947 (1987)

    Article  Google Scholar 

  35. Donnelly D.: The parabolic envelope of constant initial speed trajectories. Am. J. Phys. 60, 1149–1150 (1992)

    Article  Google Scholar 

  36. French A.P.: The envelopes of some families of fixed-energy trajectories. Am. J. Phys. 61, 805–811 (1993)

    Article  Google Scholar 

  37. Murphy R.V.: Maximum range problems in a resisting medium. Math. Gaz. 63, 10–16 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Borwein J., Bailey D., Girgensohn R.: Experimentation in Mathematics: Computational Paths to Discovery. A. K. Peters, Natick (2004)

    MATH  Google Scholar 

  40. Hayes B.: Why W? Am. Scientist 93, 104–108 (2005)

    Article  Google Scholar 

  41. Becker R.A.: Introduction to Theoretical Mechanics, pp. 124. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  42. Lichtenberg D.B., Wills J.G.: Maximizing the range of the shot put. Am. J. Phys. 46, 546–549 (1978)

    Article  Google Scholar 

  43. Winans J.G.: Convenient equations for projectile motion. Am. J. Phys. 29, 623–626 (1961)

    Article  MathSciNet  Google Scholar 

  44. Porter W.S.: The range of a projectile. Phys. Teach. 15, 358 (1977)

    Article  Google Scholar 

  45. Palffy-Muhoray P., Balzarini D.: Maximizing the range of the shot put without calculus. Am. J. Phys. 50, 181 (1982)

    Article  Google Scholar 

  46. Bose S.K.: Maximizing the range of the shot put without calculus. Am. J. Phys. 51, 458–459 (1983)

    Article  Google Scholar 

  47. Inouye C.S., Chong E.W.T.: Maximum range of a projectile. Phys. Teach. 30, 168–169 (1992)

    Article  Google Scholar 

  48. Brown R.A.: Maximizing the range of a projectile. Phys. Teach. 30, 344–347 (1992)

    Article  Google Scholar 

  49. Baće M., Ilijić S., Narančić Z.: Maximizing the range of a projectile. Eur. J. Phys 23, 409–411 (2002)

    Google Scholar 

  50. Warburton R.D.H., Wang J., Burgdörfer J.: Analytic approximations of projectile motion with quadratic air resistance. J. Serv. Sci. Manag. 3, 98–105 (2010)

    Google Scholar 

  51. Hackborn W.W.: Projectile motion: resistance is fertile. Am. Math. Mon. 115, 813–819 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Lamb H.: Dynamics, pp. 294–297. Cambridge University Press, London (1923)

    Google Scholar 

  53. Tait P.G., Steele W.J.: A Treatise on Dynamics of a Particle, 4th edition, pp. 246–248. MacMillan and Co., London (1878)

    Google Scholar 

  54. Routh E.J.: A Treatise on Dynamics of a Particle, pp. 95–100. G. E. Stechert & Co., New York (1898)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, D.A. Relationships between the optimum parameters of four projectile motions. Acta Mech 227, 1593–1607 (2016). https://doi.org/10.1007/s00707-016-1579-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1579-4

Keywords

Navigation