Skip to main content

Advertisement

Log in

Synthesis, characterization, and thermal property of phosphate-based cobalt mixture of non-calcined, calcined, and composite material

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The phosphate-containing cobalt mixtures of non-calcined, calcined, and composite materials were synthesized in atmospheric conditions and characterized by different measurement techniques. Thermal study of these materials was carried out using DSC and TG–DTA techniques. From the study of thermal behaviour, it is observed that the composite material can not only be used as a sensible thermal heat storage material, but also can be used as a heat-dissipating material. The thermal behaviour of calcined mixture indicates its potential application towards use as a sensible thermal heat storage material due to its endothermic nature at high temperature. Average crystallite sizes were determined using the well-known Debye–Scherrer equation and are found to be 37.0 nm and 28.6 nm for the non-calcined and calcined mixture, respectively. The calculated band gap, Eg, of both the mixtures indicates their semiconducting behaviour at room temperature, and the calculated refractive index using the Moss and Ravindra relation are 2.52 and 2.62 for the non-calcined and calcined mixtures, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Imponenti L, Albrecht KJ, Wands JW, Sanders MD, Jackson GS (2017) Sol Energy 151:1

    Article  CAS  Google Scholar 

  2. Chacartegui R, Alovisio A, Ortiz C, Valverde JM, Verda V, Becerra JA (2016) Appl Energy 173:589

    Article  CAS  Google Scholar 

  3. Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P (2014) Renew Sustain Energy Rev 32:591

    Article  CAS  Google Scholar 

  4. Koçak B, Paksoy H (2019) Int J Energy Res 43:6454

    Article  Google Scholar 

  5. Nkhonjera L, Bello-Ochende T, John G, Kingondu CK (2017) Renew Sustain Energy Rev 75:157

    Article  CAS  Google Scholar 

  6. Tatsidjodoung P, Le Pierrès N, Luo L (2013) Renew Sustain Energy Rev 18:327

    Article  Google Scholar 

  7. Tsai W-Y, Huang G-R, Wang K-K, Chen C-F, Huang JC (2017) Materials (Basel) 10:454

    Article  Google Scholar 

  8. Swain T (2018) Sol Energy 159:369

    Article  CAS  Google Scholar 

  9. Swain T (2017) J Therm Anal Calorim 127:2191

    Article  CAS  Google Scholar 

  10. Swain T, Brahma GS (2017) J Inorg Organomet Polym Mater 27:131

    Article  CAS  Google Scholar 

  11. Swain T, Brahma GS (2018) J Electron Mater 47:2817

    Article  CAS  Google Scholar 

  12. Samala S, Brahma GS, Swain T (2019) Sol Energy 177:612

    Article  CAS  Google Scholar 

  13. Elouali A, Kousksou T, El Rhafiki T, Hamdaoui S, Mahdaoui M, Allouhi A, Zeraouli Y (2019) J Energy Storage 23:69

    Article  Google Scholar 

  14. Li H, Li N, Zhang C, Zhao T, Sun L, Shang M, Liu C, Zhou Y, Zhang S, Wang Z (2018) Aust J Chem 71:442

    Article  CAS  Google Scholar 

  15. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) J Energy Storage 21:632

    Article  Google Scholar 

  16. Viter VN, Nagornyi PG (2009) Russ J Appl Chem 82:935

    Article  CAS  Google Scholar 

  17. Zhou G, Wang W, Gu G, Li Y, Liu Y (2011) Int J Chem 3:127

    Article  CAS  Google Scholar 

  18. Šoptrajanov B, Stefov V, Kuzmanovski I, Jovanovski G, Lutz HD, Engelen B (2002) J Mol Struct 613:7

    Article  Google Scholar 

  19. Mielke Z, Andrews L (1989) J Phys Chem 93:2971

    Article  CAS  Google Scholar 

  20. Hashimoto K, Toda Y, Hashimoto K, Arai Y (1992) Shikizai Kyokai 65:284

    CAS  Google Scholar 

  21. Highfield J, Lim HQ, Fagerlund J, Zevenhoven R (2012) RSC Adv 2:6535

    Article  CAS  Google Scholar 

  22. Isika M, Tugay E, Gasanlyc N (2016) Optik 127:8301

    Article  Google Scholar 

  23. Moss T (1985) Phys Status Solidi B 131:415

    Article  CAS  Google Scholar 

  24. Ravindra NM, Auluck S, Srivastava VK (1979) Phys Status Solidi B 93:K155

    Article  CAS  Google Scholar 

  25. Galkova TN, Pacewska B, Samuskevich VV, Pysiak J, Shulga NV (2000) J Therm Anal Calorim 60:1019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SS, Research scholar in the Department of Chemistry, IcfaiTech, IFHE, is thankful to the University for necessary financial support. The author TS thanks Indic Institute of Design and Research for providing necessary support to get associated with this work. GSB and SS are grateful to the Director, FST, IFHE, for providing the required laboratory facility for the synthesis of the mixtures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Sankhar Brahma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 52 kb)

Supplementary file2 (DOCX 1223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samala, S., Brahma, G.S. & Swain, T. Synthesis, characterization, and thermal property of phosphate-based cobalt mixture of non-calcined, calcined, and composite material. Monatsh Chem 151, 141–152 (2020). https://doi.org/10.1007/s00706-019-02538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02538-9

Keywords

Navigation