Skip to main content
Log in

Identification and in silico characterisation of defective molecules associated with isolates of banana bunchy top virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Banana bunchy top virus (BBTV) is a multi-component single-stranded DNA virus. From 267 potentially infected Musa plants, 24 apparently ‘defective’ BBTV components have been identified. Interestingly, 23/24 of these defective molecules were apparently derived from DNA-R. All of the identified defective molecules had retained at least part of the CR-SL and CR-M but had insertions and/or deletions that in most cases resulted in open reading frame disruptions. Our detection of three monophyletic but diverse (and therefore likely circulating) defective DNA-R lineages suggests that, in many cases, defective DNA-R molecules might remain associated with BBTV genomes for prolonged periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Aronson MN, Meyer AD, Györgyey J, Katul L, Vetten HJ, Gronenborn B, Timchenko T (2000) Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J Virol 74:2967–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bach J, Jeske H (2014) Defective DNAs of beet curly top virus from long-term survivor sugar beet plants. Virus Res 183:89–94

    Article  CAS  PubMed  Google Scholar 

  3. Bell KE, Dale JL, Ha CV, Vu MT, Revill PA (2002) Characterisation of Rep-encoding components associated with banana bunchy top nanovirus in Vietnam. Arch Virol 147:695–707

    Article  CAS  PubMed  Google Scholar 

  4. Burns TM, Harding RM, Dale JL (1995) The genome organisation of banana bunchy top virus: analysis of six ssDNA components. J Gen Virol 76:1471–1482

    Article  CAS  PubMed  Google Scholar 

  5. Casado CG, Javier Ortiz G, Padron E, Bean SJ, McKenna R, Agbandje-McKenna M, Boulton MI (2004) Isolation and characterization of subgenomic DNAs encapsidated in “single” T = 1 isometric particles of Maize streak virus. Virology 323:164–171

    Article  CAS  PubMed  Google Scholar 

  6. Dale JL (1987) Banana bunchy top—an economically important tropical plant-virus disease. Adv Virus Res 33:301–325

    Article  CAS  PubMed  Google Scholar 

  7. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frischmuth T, Stanley J (1992) Characterization of beet curly top virus subgenomic DNA localizes sequences required for replication. Virology 189:808–811

    Article  CAS  PubMed  Google Scholar 

  9. Fu HC, Hu JM, Hung TH, Su HJ, Yeh HH (2009) Unusual events involved in banana bunchy top virus strain evolution. Phytopathology 99:812–822

    Article  CAS  PubMed  Google Scholar 

  10. Hadfield J, Thomas JE, Schwinghamer MW, Kraberger S, Stainton D, Dayaram A, Parry JN, Pande D, Martin DP, Varsani A (2012) Molecular characterisation of dicot-infecting mastreviruses from Australia. Virus Res 166:13–22

    Article  CAS  PubMed  Google Scholar 

  11. Hafner GJ, Harding RM, Dale JL (1995) Movement and transmission of banana bunchy top virus DNA component one in bananas. J Gen Virol 76:2279–2285

    Article  CAS  PubMed  Google Scholar 

  12. Hafner GJ, Harding RM, Dale JL (1997) A DNA primer associated with banana bunchy top virus. J Gen Virol 78:479–486

    Article  CAS  PubMed  Google Scholar 

  13. Hafner GJ, Stafford MR, Wolter LC, Harding RM, Dale JL (1997) Nicking and joining activity of banana bunchy top virus replication protein in vitro. J Gen Virol 78:1795–1799

    Article  CAS  PubMed  Google Scholar 

  14. Harding RM, Burns TM, Dale JL (1991) Virus-like particles associated with banana bunchy top disease contain small single-stranded DNA. J Gen Virol 72:225–230

    Article  CAS  PubMed  Google Scholar 

  15. Herrera-Valencia VA, Dugdale B, Harding RM, Dale JL (2006) An iterated sequence in the genome of banana bunchy top virus is essential for efficient replication. J Gen Virol 87:3409–3412

    Article  CAS  PubMed  Google Scholar 

  16. Horn J, Lauster S, Krenz B, Kraus J, Frischmuth T, Jeske H (2011) Ambivalent effects of defective DNA in beet curly top virus-infected transgenic sugarbeet plants. Virus Res 158:169–178

    Article  CAS  PubMed  Google Scholar 

  17. Horser CL, Karan M, Harding RM, Dale JL (2001) Additional Rep-encoding DNAs associated with banana bunchy top virus. Arch Virol 146:71–86

    Article  CAS  PubMed  Google Scholar 

  18. Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, Brown JK (2011) An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. J Gen Virol 92:706–717

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Robinson DJ, Harrison BD (1998) Defective forms of cotton leaf curl virus DNA-A that have different combinations of sequence deletion, duplication, inversion and rearrangement. J Gen Virol 79:1501–1508

    Article  CAS  PubMed  Google Scholar 

  20. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. doi:10.1093/ve/vev003

    Google Scholar 

  22. Ndunguru J, Legg JP, Fofana IBF, Aveling TAS, Thompson G, Fauquet CM (2006) Identification of a defective molecule derived from DNA-A of the bipartite begomovirus of East African cassava mosaic virus. Plant Pathol 55:2–10

    Article  CAS  Google Scholar 

  23. Paprotka T, Boiteux LS, Fonseca MEN, Resende RO, Jeske H, Faria JC, Ribeiro SG (2010) Genomic diversity of sweet potato geminiviruses in a Brazilian germplasm bank. Virus Res 149:224–233

    Article  CAS  PubMed  Google Scholar 

  24. Patil BL, Dasgupta I (2006) Defective interfering DNAs of plant viruses. Crit Rev Plant Sci 25:47–64

    Article  CAS  Google Scholar 

  25. Patil BL, Dutt N, Briddon RW, Bull SE, Rothenstein D, Borah BK, Dasgupta I, Stanley J, Jeske H (2007) Deletion and recombination events between the DNA-A and DNA-B components of Indian cassava-infecting geminiviruses generate defective molecules in Nicotiana benthamiana. Virus Res 124:59–67

    Article  CAS  PubMed  Google Scholar 

  26. Rey MEC, Ndunguru J, Berrie LC, Paximadis M, Berry S, Cossa N, Nuaila VN, Mabasa KG, Abraham N, Rybicki EP, Martin D, Pietersen G, Esterhuizen LL (2012) Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in Southern Africa, including the South-west Indian Ocean Islands. Viruses 4:1753–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rybicki EP, Pietersen G (1999) Plant virus disease problems in the developing world. Adv Virus Res 53:127–175

    Article  CAS  PubMed  Google Scholar 

  28. Rybicki EP (2015) A Top Ten list for economically important plant viruses. Arch Virol 160:17–20

    Article  CAS  PubMed  Google Scholar 

  29. Schubert J, Habekuß A, Wu B, Thieme T, Wang X (2014) Analysis of complete genomes of isolates of the Wheat dwarf virus from new geographical locations and descriptions of their defective forms. Virus Genes 48:133–139

    Article  CAS  PubMed  Google Scholar 

  30. Stainton D, Kraberger S, Walters M, Wiltshire EJ, Rosario K, Halafihi M, Lolohea S, Katoa I, Faitua TH, Aholelei W, Taufa L, Thomas JE, Collings DA, Martin DP, Varsani A (2012) Evidence of inter-component recombination, intra-component recombination and reassortment in banana bunchy top virus. J Gen Virol 93:1103–1119

    Article  CAS  PubMed  Google Scholar 

  31. Stainton D, Martin D, Muhire B, Lolohea S, Halafihi M, Lepoint P, Blomme G, Crew KS, Sharman M, Kraberger S, Dayaram A, Walters M, Collings DA, Mabvakure B, Lemey P, Harkins G, Thomas JE, Varsani A (2015) The global distribution of Banana bunchy top virus reveals little evidence for frequent recent, human-mediated long distance dispersal events. Virus Evol. doi:10.1093/ve/vev009

    Google Scholar 

  32. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stanley J, Townsend R (1985) Characterisation of DNA forms associated with cassava latent virus infection. Nucleic Acids Res 13:2189–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stanley J, Frischmuth T, Ellwood S (1990) Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc Natl Acad Sci USA 87:6291–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stanley J, Saunders K, Pinner MS, Wong SM (1997) Novel defective interfering DNAs associated with ageratum yellow vein geminivirus infection of Ageratum conyzoides. Virology 239:87–96

    Article  CAS  PubMed  Google Scholar 

  36. Stenger DC, Stevenson MC, Hormuzdi SG, Bisaro DM (1992) A number of subgenomic DNAs are produced following agroinoculation of plants with beet curly top virus. J Gen Virol 73:237–242

    Article  CAS  PubMed  Google Scholar 

  37. Su HJ, Tsao LY, Wu ML, Hung TH (2003) Biological and molecular categorization of strains of Banana bunchy top virus. J Phytopathol 151:290–296

    Article  CAS  Google Scholar 

  38. Thomas JE, Dietzgen RG (1991) Purification, characterization and serological detection of virus-like particles associated with banana bunchy top disease in Australia. J Gen Virol 72:217–224

    Article  CAS  PubMed  Google Scholar 

  39. van der Walt E, Rybicki EP, Varsani A, Polston JE, Billharz R, Donaldson L, Monjane AL, Martin DP (2009) Rapid host adaptation by extensive recombination. J Gen Virol 90:734–746

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wanitchakorn R, Hafner GJ, Harding RM, Dale JL (2000) Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J Gen Virol 81:299–306

    Article  CAS  PubMed  Google Scholar 

  41. Wanitchakorn R, Harding RM, Dale JL (2000) Sequence variability in the coat protein gene of two groups of banana bunchy top isolates. Arch Virol 145:593–602

    Article  CAS  PubMed  Google Scholar 

  42. Wu R-Y, You L-R, Soong T-S (1994) Nucleotide sequences of two circular single-stranded DNAs associated with banana bunchy top virus. Phytopathology 84:952–957

    Article  CAS  Google Scholar 

  43. Yu NT, Zhang YL, Feng TC, Wang JH, Kulye M, Yang WJ, Lin ZS, Xiong Z, Liu ZX (2012) Cloning and sequence analysis of two banana bunchy top virus genomes in Hainan. Virus Genes 44:488–494

    Article  CAS  PubMed  Google Scholar 

  44. Zaffalon V, Mukherjee SK, Reddy VS, Thompson JR, Tepfer M (2012) A survey of geminiviruses and associated satellite DNAs in the cotton-growing areas of northwestern India. Arch Virol 157:483–495

    Article  CAS  PubMed  Google Scholar 

  45. Zhou XP, Xie Y, Zhang ZK, Qi YJ, Wu JJ (2001) Molecular characterization of a novel defective DNA isolated from tobacco tissues infected with tobacco leaf curl virus. Acta Virol 45:45–50

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.S was supported by a postgraduate scholarship from the Marsden Fund of New Zealand (UOC0903). AV and DPM are supported by the National Research Foundation of South Africa. This work was supported by the Marsden Fund Council from government funding, administered by the Royal Society of New Zealand (grant UOC0903) awarded to AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Varsani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data 1 Fasta file of defective BBTV sequences (TXT 25 kb)

705_2015_2736_MOESM2_ESM.pdf

Supplementary Figure 1 Insert and deletion breakpoint distribution plot where total numbers of breakpoints falling within a 200-nt moving window have been plotted across DNA-R (black line). Points where the black line emerges above the dark grey (95% confidence interval on the expected number of breakpoints at particular genome sites) and light grey (99% confidence interval) areas indicate statistically significant degrees of breakpoint clustering. Two breakpoint hotspots detected at a p–value significance threshold ≤ 0.01) are highlighted in red. (PDF 361 kb)

705_2015_2736_MOESM3_ESM.pdf

Supplementary Figure 2 Maximum-likelihood phylogenetic tree of the rep coding region of the defective DNA-R molecule sequences (insert regions removed) and 302 DNA-R components (see Supplementary Table 1). The phylogenetic tree was rooted with ABTV DNA-R sequences, and branches with < 60% bootstrap support were collapsed. Isolate information is available in Supplementary Table 1 for the DNA-R sequences and in Table 1 for the defective genomes (PDF 977 kb)

705_2015_2736_MOESM4_ESM.doc

Supplementary Table 1 List of DNA-R sequences used in Figure 2 with two-letter country codes: AU, Australia; BI, Burundi; CD, Democratic Republic of Congo; CG, Congo; CN, China; EG, Egypt; FJ, Fiji; ID, Indonesia; IN, India; JP, Japan; LK, Sri Lanka; MM, Myanmar; MY, Malaysia; MW, Malawi; PH, Philippines; PK, Pakistan; RW, Rwanda; TO, Tonga; TW, Taiwan; US, United States of America; VN, Vietnam; WS, Samoa (DOC 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stainton, D., Martin, D.P., Collings, D.A. et al. Identification and in silico characterisation of defective molecules associated with isolates of banana bunchy top virus. Arch Virol 161, 1019–1026 (2016). https://doi.org/10.1007/s00705-015-2736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2736-0

Keywords

Navigation