Skip to main content

Advertisement

Log in

Climate change scenarios and the dragon fruit climatic zoning in Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The present paper aims to compute climatological zones apt for the cultivation of pitaya based on trends in the occurrence of climate change events from the IPCC (Intergovernmental Panels on Climate Change) in Brazil. We used temperature and precipitation data from 4942 cities collected on the NASA/POWER platform (National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources) from 1990 to 2020 to elaborate on the current scenario. The climate change scenarios were obtained using the CHELSA platform (Climatologies at high resolution for the earth’s land surface areas) and corresponded to the periods 2041–2060 and 2061–2080 associated with four IPCC climate change scenarios. The spatialization of the data occurred according to the bioclimatic classes designed to meet the thermal and water needs of the crop. In the current scenario, class B5 has a predominance of 37.07% of the country, characterizing the Midwest, Southeast, and Northeast regions, as well as the state of Paraná, as suitable for the cultivation of pitaya. Projections of temperature increase and reduction of accumulated rainfall were found throughout Brazil, but with greater impact in the North and Northeast regions, which had the greatest reduction of areas suitable for the cultivation of pitaya with a greater predominance of classes B8 and B9. In the South and Southeast regions, class B5 makes up a large part of the areas that remained suitable for the production of this fruit until 2080. The results suggest that climate change does not benefit the cultivation of pitaya in some regions of Brazil because the dimensions of the areas suitable for economic production are restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data/material is opened.

Code availability

The software used was python and scripts are available.

References

  • Adefisan E (2018) Climate change impact on rainfall and temperature distributions over West Africa from three IPCC scenarios. J Earth Sci Clim Chang 9:476. https://doi.org/10.4172/2157-7617.1000476

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL (2013) Modeling monthly mean air temperature for Brazil. Theoret Appl Climatol 113(3):407–427. https://doi.org/10.1007/s00704-012-0796-6

    Article  Google Scholar 

  • Andrea MCDS, Boote KJ, Sentelhas PC, Romanelli TL (2018) Variability and limitations of maize production in Brazil: potential yield, water-limited yield and yield gaps. Agric Syst 165:264–273. https://doi.org/10.1016/j.agsy.2018.07.004

    Article  Google Scholar 

  • Aparecido LEO, Lorençone PA, Lorençone JA, Meneses KC, Moraes JRSC (2021) Climate changes and their influences in water balance of Pantanal biome. Theoret Appl Climatol 143(1):659–674

    Article  Google Scholar 

  • Ben-Asher J, Nobel PS, Yossov E, Mizrahi Y (2006) Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: drought influence and a novel method for analyzing temperature dependence. Photosynthetica 44:181–186

    Article  Google Scholar 

  • Burney J, Woltering L, Burke M, Naylor R, Pasternak D (2010) Solar-powered drip irrigation enhances food security in the Sudano-Sahel. Proc Natl Acad Sci 107(5):1848–1853

    Article  Google Scholar 

  • Casaroli D, Rosa FDO, Alves Júnior J, Evangelista AWP, Brito BVD, Pena DS (2018) Aptidão edafoclimática para o mogno-africano no Brasil. Ciência Florestal 28:357–368. https://doi.org/10.5902/1980509831606

    Article  Google Scholar 

  • Chen S, Gong B (2021) Response and adaptation of agriculture to climate change: evidence from China. J Dev Econ 148:102557. https://doi.org/10.1016/j.jdeveco.2020.102557

    Article  Google Scholar 

  • Chu YC, Chang JC (2020) High temperature suppresses fruit/seed set and weight, and cladode regreening in red-fleshed ‘Da Hong’pitaya (Hylocereus polyrhizus) under controlled conditions. HortScience, 55(8):1259-1264. https://doi.org/10.21273/HORTSCI15018-20

  • de Oliveira MMT, Shuhua L, Kumbha DS, Zurgil U, Raveh E, Tel-Zur N (2020) Performance of Hylocereus (Cactaceae) species and interspecific hybrids under high-temperature stress. Plant Physiol Biochem 153:30–39. https://doi.org/10.1016/j.plaphy.2020.04.044

    Article  Google Scholar 

  • Dias HB, Sentelhas PC (2019) Dimensioning the impact of irrigation on sugarcane yield in Brazil. Sugar Tech 21(1):29–37. https://doi.org/10.1007/s12355-018-0619-x

    Article  Google Scholar 

  • Donadio LC (2009) Pitaya. Revista Brasileira de fruticultura, 31(3):0–0

  • Gondim R, Silveira C, de Souza FF, Vasconcelos F, Cid D (2018) Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, semi-arid Brazil. Environ Earth Sci 77(15):1–14. https://doi.org/10.1007/s12665-018-7723-9

    Article  Google Scholar 

  • Guimarães RRDC, Barradas JDO, Silva RTLD, Moreira WKO, Souza SKAD (2021) Growth of pitaya seedlings according to the type of substrate and the frequency of irrigation. Revista Ceres 68:276–284

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10. https://doi.org/10.1016/J.WACE.2015.08.001

    Article  Google Scholar 

  • Hieu NT, Vo MM, Nguyen VH (2014) Identification of primary and secondary causal agents of sun burn on pitaya. SOFRI Ann Rpt (in Vietnamese)

  • IBGE (2020) IBGE - Instituto Brasileiro de Geografia e Estatística. Áreas territoriais. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?=&t=o-que-e. Accessed 04 Aug 2021 (in Portuguese)

  • IPCC (2013) Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, edited by: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535.https://doi.org/10.1017/CBO9781107415324

  • IPCC (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

  • Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL (2012) Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol 160(4):1719–1727. https://doi.org/10.1104/pp.112.206524

    Article  Google Scholar 

  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4(1):1–20. https://doi.org/10.1038/sdata.2017.122

    Article  Google Scholar 

  • Köppen W. Das Geographische System der Klimatologie. Berlin, 44 p. 1936

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metal Min Soc South Africa 52:119–139

    Google Scholar 

  • Lambers H, Oliveira RS (2019) Plant water relations. In: Ecologia Fisiológica Vegetal. Springer, Cham. https://doi.org/10.1007/978-3-030-29639-1_5

  • Lim TK (2012) Hylocereus megalanthus. In: Edible medicinal and non-medicinal plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8661-7_90

  • Luo J, Xu M, Liu C, Wei S, Tang H (2021) Effects comparation of different mulching methods on soil in pitaya orchards. Int Agrophys 35(3):269–278. https://doi.org/10.31545/intagr/142845

    Article  Google Scholar 

  • Melo TKD, Espínola Sobrinho JOSE, Medeiros JFD, Figueiredo VB, SILVA JSD, Sá FVDS (2020) Impacts of climate change scenarios in the Brazilian semiarid region on watermelon cultivars. Revista Caatinga, 33:794–802–794–802. https://doi.org/10.1590/1983-21252020v33n323rc

  • Merten S (2003) A review of Hylocereus production in the United States. J PACD 5:98–105

    Google Scholar 

  • Mizrahi Y (2014) Vine-cacti pitayas: the new crops of the world. Rev Bras Frutic 36(1):124–138

    Article  Google Scholar 

  • Mizrahi Y, Nerd A (1999) Climbing and columnar cacti- new arid lands fruit crops. In: Janick J (ed) Perspective in new crops and new crops uses. ASHS Press, Alexandria, USA, pp 358–366

    Google Scholar 

  • Moraes JRDSC, Rolim GDS, Martorano LG, Aparecido LEDO, Bispo RC, Valeriano TTB, Esteves JT (2020) Performance of the ECMWF in air temperature and precipitation estimates in the Brazilian Amazon. Theoret Appl Climatol 141(3):803–816. https://doi.org/10.1007/s00704-020-03231-2

    Article  Google Scholar 

  • Multsch S, Krol MS, Pahlow M, Assunção AL, Barretto AG, De Jong Van Lier Q, Breuer L (2020) Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil. Hydrol Earth Syst Sci 24(1):307–324. https://doi.org/10.5194/hess-24-307-2020

    Article  Google Scholar 

  • Najeeb U, Tan DKY, Sarwar M, Ali S (2019) Adaptation of crops to warmer climates: 30 morphological and physiological mechanisms, in: sustainable solutions for food security. Springer International Publishing, Cham, 27–50. https://doi.org/10.1007/978-3-319-77878-569 5_2

  • Nerd A, Mizrahi Y (1998) Fruit development and ripening in yellow pitaya. J Am Soc Hortic Sci 123(4):560–562. https://doi.org/10.21273/JASHS.123.4.560

    Article  Google Scholar 

  • Nerd A, Sitrit Y, Kaushik RA, Mizrahi Y (2002) High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp.). Sci Hortic 96(1–4):343–350. https://doi.org/10.1016/S0304-4238(02)00093-6

    Article  Google Scholar 

  • Nobel PS, De La Barrera E (2004) CO2 uptake by the cultivated hemiepiphytic cactus Hylocereus undatus. Ann Appl Biol 144(1):1–8. https://doi.org/10.1111/j.1744-7348.2004.tb00310.x

    Article  Google Scholar 

  • Nobel PS, De la Barrera E, Beilman DW, Doherty JH, Zutta BR (2002) Temperature limitations for cultivation of edible cacti in California. Madroño 49:228–236

    Google Scholar 

  • Nuzhyna N, Baglay K, Golubenko A, Lushchak O (2018) Anatomically distinct representatives of Cactaceae Juss. family have different response to acute heat shock stress. Flora 242:137–145. https://doi.org/10.1016/j.flora.2018.03.014

    Article  Google Scholar 

  • Ojeda-Pérez ZZ, Jiménez-Bremont JF, Delgado-Sánchez P (2017) Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha. PLoS ONE 12(10):186–540. https://doi.org/10.1371/journal.pone.0186540

    Article  Google Scholar 

  • Oliveira PT, Silva S, Lima KC (2017) Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoret Appl Climatol 130(1):77–90

    Article  Google Scholar 

  • Ortiz HYD (1999) Pitahaya: un nuevo cultivo para México. Ed. Limusa-Grupo Noriega. México, DF

  • Paulli RE, Duarte O (2013) Tropical fruits. Crop Prod Science Hortic, 2 ed., 130(24):303

  • Pousa R, Costa MH, Pimenta FM, Fontes VC, Brito VFAD, Castro M (2019) Climate change and intense irrigation growth in Western Bahia, Brazil: the urgent need for hydroclimatic monitoring. Water 11(5):933. https://doi.org/10.3390/w11050933

    Article  Google Scholar 

  • Soengas P, Rodríguez VM, Velasco P, Cartea ME (2018) Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega 3(5):5237–5243. https://doi.org/10.1021/acsomega.8b00242

    Article  Google Scholar 

  • Sosa V, Guevara R, Gutiérrez-Rodríguez BE, Ruiz-Domínguez C (2020) Optimal areas and climate change effects on dragon fruit cultivation in Mesoamerica. J Agric Sci 158(6):461–470. https://doi.org/10.1017/S0021859620000775

    Article  Google Scholar 

  • de Sousa GG, Sousa SB, da S Pereira AC, Marques VB, da Silva ML, da S Lopes J (2021) Effect of saline water and shading on dragon fruit ('pitaya') seedling growth. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi, 25(8)

  • Souza GHO, Aparecido LEO, Moraes JRSCM, Botega GT (2022) Climate change and its influence on planting of cassava in the Midwest region of Brazil. Environ Dev Sustain, 1-21.https://doi.org/10.1007/s10668-021-02088-3

  • Stackhouse PW, Zhang T, Westberg D, Barnett AJ, Bristow T, Macpherson B, Hoell JM (2018) POWER Release 8 (with GIS Applications) methodology (data parameters, sources, and validation—Data Version 8.0.1). NASA Langley Research Center, Hampton, VA, USA

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trivellini A, Lucchesini M, Ferrante A, Massa D, Orlando M, Incrocci L, Mensuali-Sodi A (2020) Pitaya, an attractive alternative crop for mediterranean region. Agronomy 10(8):1065. https://doi.org/10.3390/agronomy10081065

    Article  Google Scholar 

  • Tsai Y, Lin CG, Chen WL, Huang YC, Chen CY, Huang KF, Yang CH (2019) Evaluation of the antioxidant and wound-healing properties of extracts from different parts of Hylocereus polyrhizus. Agronomy 9(1):27. https://doi.org/10.3390/agronomy9010027

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1):5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vázquez CS, Vázquez VS, Espinosa VMH (2020) Agroindustrialización de pitaya. Editorial Universitaria (Cuba)

  • Venancio LP, Filgueiras R, Mantovani EC, do Amaral CH, da Cunha FF, dos Santos Silva FC, Althoff D, Santos RA, Cavatte PC (2020) Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State. Brazil Sci Report 10(1):1–21. https://doi.org/10.1038/s41598-020-76713-y

    Article  Google Scholar 

  • Wei L, Xin X, Xiao C, Li Y, Wu Y, Tang H (2019) Performance of BCC-CSM models with different horizontal resolutions in simulating extreme climate events in China. J Meteorol Res 33(4):720–733. https://doi.org/10.1007/s13351-019-8159-1

    Article  Google Scholar 

  • Wollmann CA, Galvani E (2013) Zoneamento agroclimático: linhas de pesquisa e caracterização teórica-conceitual. Sociedade & Natureza 25(1):179–190

    Article  Google Scholar 

  • Wu T, Li W, Ji J, Xin X, Li L, Wang Z, Zhang Y, Li J, Zhang F, Wei M, Shi X, Wu F, Zhang L, Chu M, Jie W, Liu Y, Wang F, Liu X, Li Q, Dong M, Liang X, Gao Y, Zhang J (2013) Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J Geophys Res: Atmos 118(10):4326–4347. https://doi.org/10.1002/jgrd.50320

    Article  Google Scholar 

  • Xiao-Ge X, Tong-Wen W, Jiang-Long L, Zai-Zhi W, Wei-Ping L, Fang-Hua W (2013) How well does BCC_CSM1. 1 reproduce the 20th century climate change over China? Atmos Oceanic Sci Lett 6(1):21–26. https://doi.org/10.1080/16742834.2013.11447053

    Article  Google Scholar 

  • Xin X, Gao F, Wei M, Wu T, Fang Y, Zhang J (2018) Decadal prediction skill of BCC‐CSM1. 1 climate model in East Asia. Int J Climatol 38(2):584–592. https://doi.org/10.1002/joc.5195

    Article  Google Scholar 

  • Zamani R, Berndtsson R (2019) Evaluation of CMIP5 models for west and southwest Iran using TOPSIS-based method. Theoret Appl Climatol 137(1):533–543. https://doi.org/10.1007/s00704-018-2616-0

    Article  Google Scholar 

  • Zee F, Yen CR, Nishina M (2004) Pitaya (dragon fruit, strawberry pear)

  • Zhang M, Abrahao G, Thompson S (2021) Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change. Clim Change 168(3):1–28. https://doi.org/10.1007/s10584-021-03223-9

    Article  Google Scholar 

Download references

Funding

This study was financed in part by the IFSULDEMINAS Campus Muzambinho.

Author information

Authors and Affiliations

Authors

Contributions

Rafael F. Lima: formal analysis, conceptualization, methodology, and investigation; Alexson F. Dutra: data curation, original draft, writing–review and editing; Lucas E. O. Aparecido: project administration, term, conceptualization, methodology, investigation, writing–original draft, and writing–review and editing; Francisco de Alcântara Neto: writing–review and editing; Guilherme Botega Torsoni: term, funding acquisition, conceptualization, and writing–review and editing; Marcos Renan Lima Leite: visualization, writing–original draft, and writing–review and editing.

Corresponding author

Correspondence to Lucas Eduardo de Oliveira Aparecido.

Ethics declarations

Ethics approval

It is not necessary.

Consent to participate

All authors approved.

Consent for publication

All authors approved.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Aparecido, L.E., Dutra, A.F., de Lima, R.F. et al. Climate change scenarios and the dragon fruit climatic zoning in Brazil. Theor Appl Climatol 149, 897–913 (2022). https://doi.org/10.1007/s00704-022-04090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-04090-9

Keywords

Navigation