Skip to main content

Advertisement

Log in

Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906

    Article  Google Scholar 

  • Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:701–720

    Article  Google Scholar 

  • Bleck R, Smith LT (1990) A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. 1. Model development and supporting experiments. J Geophys Res 95:3273–3285

    Article  Google Scholar 

  • Budikova D (2009) Role of Arctic sea ice in global atmospheric circulation: a review. Glob Planet Chang 68(3):149–163

    Article  Google Scholar 

  • Butterworth S (1930) On the theory of filter amplifiers. Experimental Wireless and the Wireless Engineer 7:536–541

    Google Scholar 

  • Chang CP, Zhang Y, Li T (2000a) Interannual and Interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part 1: role of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Chang CP, Zhang Y, Li T (2000b) Interannual and Interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part 2: Southeast China rainfall and meridional structure. J Clim 13:4326–4340

    Article  Google Scholar 

  • Chiang JCH, Biasutti M, Battisti DS (2003) Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography 18(4):1094. doi:10.1029/2003PA000916

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496. doi:10.1007/s00382-005-0040-5

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of north Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17:877–889

    Article  Google Scholar 

  • Ding QH, Wang B, Wallace JM, Branstator G (2011) Tropical–extratropical teleconnections in boreal summer: observed interannual variability. J Clim 24:1878–1896. doi:10.1175/2011JCLI3621.1

    Article  Google Scholar 

  • Fan K (2007) Sea ice cover over North Pacific, a predictor for the typhoon frequency over west North Pacific? Sci China Earth Sci 50:1251–1257

    Article  Google Scholar 

  • Fetterer F, Knowles K, Meier W, Savoie M (2002) Updated 2009: Sea Ice Index. National Snow and Ice Data Center, Boulder, CO

    Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Gong DY, Ho CH (2002) Shift in the summer rainfall over Yangtze River valley in the late 1970s. Geophys Res Lett 29(10):1436. doi:10.1029/2001GL014523

    Article  Google Scholar 

  • Gong DY, Ho CH (2003) Arctic Oscillation signals in East Asian summer monsoon. J Geophys Res 108(D2):4066. doi:10.1029/2002JD002193

    Article  Google Scholar 

  • Gong DY, Yang J, Kim SJ, Gao YQ, Guo D, Zhou TJ, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216. doi:10.1007/s00382-011-1041-1

    Article  Google Scholar 

  • Gu, W., Li, C.Y., Li, W.J., Zhou, W., Chan, J.C.L. (2009) Inter-decadal unstationary relationship between NAO and east China's summer precipitation patterns. Geophys Res Lett 36:L13702. doi:10.1029/2009GL038843

  • Honda M, Yamazaki K, Tachibana Y (1996) Influence of Okhotsk sea-ice extent to atmospheric circulation. Geophys Res Lett 23:3595–3598

    Article  Google Scholar 

  • Honda M, Yamazaki K, Nakamura H, Takeuchi K (1999) Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J Clim 12:3347–3358

    Article  Google Scholar 

  • Huang SS, Yang XQ, Jiang QR, Tang MM, Wang ZM, Xie Q, Zhu YC (1995) The effects of the polar sea ice on climate (in Chinese). Journal of the Meteorological Sciences 15(4):46–56

    Google Scholar 

  • Johannessen OM (2008) Decreasing Arctic sea ice mirrors increasing CO2 on Decadal Time Scale. Atmospheric and Oceanic Science Letters 1(1):51–56

    Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modeled temperature and sea ice variability. Tellus 56A:328–341

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–431

    Article  Google Scholar 

  • Lau KM, Kim KM, Yang S (2000) Dynamical and Boundary forcing characteristics of regional components of the Asian summer monsoon. J Clim 13(14):2461–2482

    Article  Google Scholar 

  • Liang XZ, Wang WC (1998) Association between China monsoon rainfall and tropospheric jets. Q J R Meteorol Soc 124:2597–2623

    Article  Google Scholar 

  • Lohmann K, Drange H, Bentsen M (2009) Response of the north Atlantic subpolar gyre to persistent north Atlantic oscillation like forcing. Clim Dyn 32:273–285

    Article  Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of north Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: main features and storm track characteristics of the response. J Clim 17:857–875

    Article  Google Scholar 

  • Meehl GA et al. (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Mesquita DSM, Hodges KI, Atkinson DE, Bader J (2010) Sea-ice anomalies in the Sea of Okhotsk and the relationship with storm tracks in the Northern Hemisphere during winter. Tellus 63(2):312–323

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features. Geoscientific Model Development 2:197–212

    Article  Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  • Salas-Mélia D (2002) A global coupled sea ice–ocean model. Ocean Model 4(2):137–172

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293

    Article  Google Scholar 

  • Song H, Sun Z (2003) Spatial and temporal distributions of serious summer flood and drought in North China and their relationship to the North Arctic Sea-Ice (in Chinese). Journal of Nanjing Institute of Meteorology 26(3):289–295

    Google Scholar 

  • Su JZ, Wang HJ, Yang HJ, Drange H, Gao YQ, Bentsen M (2008) Role of the atmospheric and oceanic circulation in the Tropical Pacific SST changes. J Clim 21:2019–2034

    Article  Google Scholar 

  • Tao SY, Chen LX (1987) A review of recent research on the East Asia summer monsoon in China. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp. 60–92

  • Wang B (1992) The vertical structure and development of the ENSO anomaly mode during 1979–1989. J Atmos Sci 49(8):698–712

    Article  Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon? J Clim 21:4449–4464

    Article  Google Scholar 

  • Wu BY, Zhang RH, Wang B, D’Arrigo R (2009a) On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys Res Lett 36:L09501. doi:10.1029/2009GL037299

    Google Scholar 

  • Wu BY, Yang K, Zhang RH (2009b) Eurasian snow cover variability and its association with summer rainfall in China. Adv Atmos Sci 26(1):31–44

    Article  Google Scholar 

  • Wu RG, Wang B (2000) Interannual variability of summer monsoon onset over the Western North Pacific and the underlying processes. J Clim 13:2483–2510

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs Bull. Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yang H, Liu Z (2005) Tropical–extratropical climate interaction as revealed in idealized coupled climate model experiments. Clim Dyn 24:863–879

    Article  Google Scholar 

  • Zhang JT, Rothrock D, Steele M (2000) Recent changes in Arctic sea ice: the interplay between ice dynamics and thermodynamics. J Clim 13:3099–3314

    Article  Google Scholar 

  • Zhao P, Zhang X, Zhou X, Ikeda M, Yin Y (2004) The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J Clim 17:3434–344

    Article  Google Scholar 

  • Zhou TJ, Yu RC (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110:D08104. doi:10.1029/2004JD005413

    Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Basic Research Program (2009CB421406) and Chinese Academy of Sciences Innovation Program (XDA05110203) and by the Norwegian Research Council through the Impact of “Blue Arctic” on Climate at High Latitudes (BlueArc 207650/E10) and Exploring Decadal to Century Scale Variability and Changes in the East Asia (DecCen 193690) and the Arctic and sub-Arctic climate system and ecological response to the early twentieth century warming (ARCWARM 178239/E10) projects. Dr. Gong D.Y. was supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Gao, Y., Bethke, I. et al. Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor Appl Climatol 115, 107–119 (2014). https://doi.org/10.1007/s00704-013-0872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0872-6

Keywords

Navigation