Skip to main content

Advertisement

Log in

Comparing GlobCurrent dataset with numerical results from a high-resolution implementation of the POLCOMS-WAM coupled system under a strong gap wind over the Gulf of Tehuantepec

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

GlobCurrent provides a variety of datasets aiming to describe global ocean circulation, especially when dealing with large-scale phenomena. It includes surface Stokes drift and geostrophic, Ekman, and total (geostrophic plus Ekman) currents. GlobCurrent uses the CNES-CLS13 mean dynamic topography estimation as well as data from sea surface drifters and wind reanalysis to improve the computation of ocean currents from altimetry data, which represents a significant advance in describing the total ocean current. The aim of this work is to compare the surface GlobCurrent estimates with a coupled ocean–wave numerical simulation (POLCOMS-WAM), drifting buoys, and altimeter observations when dealing with a Tehuano event, i.e., intense (larger than 20 m s \(^{-1}\)) and short duration (around 3–5 days) low-level winds blowing over the Gulf of Tehuantepec, Mexico. There is a good agreement between the wind-driven currents (Ekman currents plus Stokes drift) field from GlobCurrent and that estimated by POLCOMS–WAM, with the largest magnitudes \(\sim \)0.8 m s\(^{-1}\) in the region influenced by the highest winds’ speed. The geostrophic circulation patterns in the Gulf of Tehuantepec are similarly reproduced by GlobCurrent and POLCOMS-WAM. However, some differences were observed in the presence of an anticyclonic eddy located in the western part of the study area. Numerical results exhibit a more symmetrical eddy with geostrophic current speeds that, in agreement with along-track observations, exceed the 1 m s\(^{-1}\). Instead, the geostrophic eddy in GlobCurrent shows velocities of about 0.8 m s\(^{-1}\). As observed through drifting buoys in 2000, numerical results show that the anticyclonic eddy west of the GoT has strong ageostrophic currents related to a cyclogeostrophic balance, which is not included in GlobCurrent. This regional case study provides a guideline for future improvements of GlobCurrent products, in particular for the estimation of geostrophic and total currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availability

Not applicable.

References

  • Abolfazli E, Liang JH, Fan Y, Chen QJ, Walker ND, Liu J (2020) July) Surface gravity waves and their role in ocean-atmosphere coupling in the gulf of mexico. J Geophys Res Oceans. https://doi.org/10.1029/2018jc014820

    Article  Google Scholar 

  • Allahdadi MN, He R, Neary VS (2022, December) Impact of the gulf stream on ocean waves. Deep Sea Research Part II: Topical Studies in Oceanography 105239. https://doi.org/10.1016/j.dsr2.2022.105239

  • Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical pacific: A review. Prog Oceanogr 69(2–4):101–142

    Article  Google Scholar 

  • Amedo-Repollo CL, Flores-Vidal X, Chavanne C, Villanoy CL, Flament P (2019) Low-frequency surface currents and generation of an island lee eddy in panay island, philippines. J Phys Oceanogr 49(3):765–787. https://doi.org/10.1175/JPO-D-17-0191.1

    Article  Google Scholar 

  • Amores A, Jordà G, Arsouze T, Le Sommer J (2018) Up to what extent can we characterize ocean eddies using present-day gridded altimetric products? J Geophys Res Oceans 123(10):7220–7236

    Article  Google Scholar 

  • Archer MR, Li Z, Fu LL (2020) June) Increasing the space-time resolution of mapped sea surface height from altimetry. J Geophys Res Oceans. https://doi.org/10.1029/2019jc015878

    Article  Google Scholar 

  • Ardhuin F, Rascle N, Belibassakis K (2008) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell 20(1):35–60

    Article  Google Scholar 

  • Ardhuin F, Roland A, Dumas F, Bennis AC, Sentchev A, Forget P, Wolf J, Girard F, Osuna P, Benoit M (2012) Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind. J Phys Oceanogr 42(12):2101–2120

    Article  Google Scholar 

  • Arnason G, Haltiner G, Frawley M (1962) Higher-order geostrophic wind approximations. Monthly Weather Rev 90:175–185

    Article  Google Scholar 

  • Arnault S (1987) Tropical atlantic geostrophic currents and ship drifts. J Geophys Res 92(C5):5076–5088. https://doi.org/10.1029/jc092ic05p05076

    Article  Google Scholar 

  • Atlas R, Hoffman RN, Bloom SC, Jusem JC, Ardizzone J (1996) A multiyear global surface wind velocity dataset using SSM/i wind observations. Bull Am Meteorol Soc 77(5):869–882. https://doi.org/10.1175/1520-0477(1996)077$<$0869:amgswv$>$2.0.co;2

  • Bakun A (2006) Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina 70(S2):105–122

    Article  Google Scholar 

  • Barton ED, Argote ML, Brown J, Suffolk L, Kosro PM, Lavin M, Robles JM, Smith RL, na A T, Velez HS (1993) Supersquirt: Dynamics of the gulf of tehuantepec, mexico. Oceanography 6

  • Birol F, Delebecque C (2014) Using high sampling rate (10/20 hz) altimeter data for the observation of coastal surface currents: A case study over the northwestern mediterranean sea. J Marine Syst 129:318–333

    Article  Google Scholar 

  • Birol F, Fuller N, Lyard F, Cancet M, Nino F, Delebecque C, Fleury S, Toublanc F, Melet A, Saraceno M et al (2017) Coastal applications from nadir altimetry: Example of the x-track regional products. Adv Space Res 59(4):936–953

    Article  Google Scholar 

  • Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates. Ocean Modell 4(1):55–88. https://doi.org/10.1016/s1463-5003(01)00012-9

    Article  Google Scholar 

  • Bolaños R, Osuna P, Wolf J, Monbaliu J, Sánchez-Arcilla A (2011) Development of the POLCOMS-WAM current-wave model. Ocean Modell 36(1–2):102–115

    Article  Google Scholar 

  • Bolanos R, Wolf J, Brown J, Osuna P, Monbaliu J, Sanchez-Arcilla A (2009) Comparison of wave-current interaction formulation using the POLCOMS-WAM wave-current model. Coastal Eng 2008:521–533

    Google Scholar 

  • Bonjean F, Lagerloef GS (2002) Diagnostic model and analysis of the surface currents in the tropical pacific ocean. J Phys Oceanogr 32(10):2938–2954

    Article  Google Scholar 

  • Breivik Ø, Janssen PAEM, Bidlot JR (2014) Approximate Stokes Drift Profiles in Deep Water. J Phys Oceanogr 44(9):2433–2445

    Article  Google Scholar 

  • Breivik Ø, Mogensen K, Bidlot JR, Alonso-Balmaseda M, Janssen PAEM (2015) Surface wave effects in the NEMO ocean model: Forced and coupled experiments. J Geophys Res Oceans 120:2973–2992. https://doi.org/10.1002/2014jc010350

    Article  Google Scholar 

  • Bricheno LM, Soret A, Wolf J, Jorba O, Baldasano JM (2013) Effect of high-resolution meteorological forcing on nearshore wave and current model performance. J Atmos Ocean Technol 30(6):1021–1037. https://doi.org/10.1175/jtech-d-12-00087.1

    Article  Google Scholar 

  • Bruinsma SL, Forste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(1):3607–3612

    Article  Google Scholar 

  • Burchard H, Bolding K, Villarreal MR (1999) GOTM, a general ocean turbulence model: theory, implementation and test cases. Space Applications Institute

  • Cancet M, Griffin D, Cahill M, Chapron B, Johannessen J, Donlon C (2019) Evaluation of GlobCurrent surface ocean current products: A case study in Australia. Remote Sens Environ 220:71–93. https://doi.org/10.1016/j.rse.2018.10.029

    Article  Google Scholar 

  • Chassignet EP, Smith LT, Halliwell GR, Bleck R (2003) North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity. J Phys Oceanogr 33:2504–2526

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91(2):167–216. https://doi.org/10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • Cheney RE, Marsh JG, Beckley BD (1983) Global mesoscale variability from collinear tracks of SEASAT altimeter data. J Geophys Res 88(C7):4343–4354. https://doi.org/10.1029/jc088ic07p04343

    Article  Google Scholar 

  • CMEMS (2017) The ssalto/duacs altimeter products were produced and distributed by the copernicus marine and environment monitoring service

  • Correia A, de Souza JM, Powell B, Castillo-Trujillo AC, Flament P (2015) The vorticity balance of the ocean surface in hawaii from a regional reanalysis. J Phys Oceanogr 45(2):424–440. https://doi.org/10.1175/JPO-D-14-0074.1

    Article  Google Scholar 

  • de León SP, Soares CG (2022) Numerical study of the effect of current on waves in the agulhas current retroflection. Ocean Eng 264:112333. https://doi.org/10.1016/j.oceaneng.2022.112333

    Article  Google Scholar 

  • Douglass EM, Richman JG (2015) Analysis of ageostrophy in strong surface eddies in the atlantic ocean. J Geophys Res Oceans 120(3):1490–1507. https://doi.org/10.1002/2014jc010350

    Article  Google Scholar 

  • Endlich RM (1961) Computation and uses of gradient winds. Mon Wea Rev 89:187–191

    Article  Google Scholar 

  • Feng H, Vandemark D, Levin J, Wilkin J (2018) Examining the accuracy of GlobCurrent upper ocean velocity data products on the Northwestern Atlantic shelf. Remote Sens 10(8):1–23. https://doi.org/10.3390/rs10081205

    Article  Google Scholar 

  • Holt JT, James D (2001) An s coordinate density evolving model of the northwest European continental shelf: 1. Model description and density structure. J Geophys Res 106(C7):2156–2202

    Google Scholar 

  • Huang NE (1971) Derivation of Stokes drift for a deep-water random gravity wave field. Deep Sea Res Oceanogr Abstracts 18(2):255–259

    Article  Google Scholar 

  • James ID (1996) Advection scheme for shelf sea models. J Marine Syst 8:237–254

    Article  Google Scholar 

  • Janssen P (2004) The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Janssen PAEM (1991) Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting. J Phys Oceanogr 21(11):1631–1642

    Article  Google Scholar 

  • Kantha LH, Clayson CA (2004) On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell 6(2):101–124. https://doi.org/10.1016/s1463-5003(02)00062-8

    Article  Google Scholar 

  • Kirby JT, Chen TM (1989) Surface waves on vertically sheared flows: Approximate dispersion relations. J Geophys Res Oceans 94(C):1013–1027

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan MA, Hasselmann K, Hasselmann S, Janssen PAEM (1996) Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge

    Google Scholar 

  • Lagerloef GSE, Mitchum GT, Lukas RB, Niiler PP (1999) Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J Geophys Res Oceans 104(C):23313–23326

    Article  Google Scholar 

  • Lewis D, Belcher S (2004) Time-dependent, coupled, ekman boundary layer solutions incorporating stokes drift. Dynam Atmos Oceans 37(4):313–351. https://doi.org/10.1016/j.dynatmoce.2003.11.001

    Article  Google Scholar 

  • Liang JH, McWilliams JC, Kurian J, Colas F, Wang P, Uchiyama Y (2012) Mesoscale variability in the northeastern tropical pacific: Forcing mechanisms and eddy properties. J Geophys Res Oceans 117(C7):1–13

    Article  Google Scholar 

  • Longuet-Higgins MS (1953) Mass transport in water waves. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 245(903):535–581 https://doi.org/10.1098/rsta.1953.0006.rsta.royalsocietypublishing.org/content/245/903/535.full.pdf

  • Lumpkin R, Pazos M (2007) Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results. Lagrangian Anal Predict Coast Ocean Dynam 39:67

    Google Scholar 

  • Maximenko N, Niiler P (2006) Mean surface circulation of the global ocean inferred from satellite altimeter and drifter data. In Proceeding of the Symposium on 15 years of Progress in Radar Altimetry, Eur. Space Agency Spec. Publ., ESA SP, Vol. 614

  • McWilliams JC, Restrepo JM, Lane EM (2004) An asymptotic theory for the interaction of waves and currents in coastal waters. J Fluid Mech 511:135–178

    Article  Google Scholar 

  • Mellor G (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33:1978–1989

    Article  Google Scholar 

  • Mellor G (2005) Some consequences of the three-dimensional current and surface wave equations. J Phys Oceanogr 35:2291

    Article  Google Scholar 

  • Morrow R, Fu LL, Ardhuin F, Benkiran M, Chapron B, Cosme E, d’Ovidio F, Farrar JT, Gille ST, Lapeyre G et al (2019) Global observations of fine-scale ocean surface topography with the surface water and ocean topography (swot) mission. Front Marine Sci 6:1–19

    Article  Google Scholar 

  • Mulet S, Rio MH, Etienne H, Artana C, Cancet M, Dibarboure G, Feng H, Husson R, Picot N, Provost C, Strub PT (2021) January) The new CNES-CLS18 global mean dynamic topography. Ocean Sci. https://doi.org/10.5194/os-2020-117

    Article  Google Scholar 

  • Müller-Karger FE, Fuentes-Yaco C (2000) Characteristics of wind-generated rings in the eastern tropical pacific ocean. J Geophys Res Oceans 105(C1):1271–1284

    Article  Google Scholar 

  • Ocampo-Torres FJ, García-Nava H, Durazo R, Osuna P, Díaz Méndez GM, Graber HC (2010) The intOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico. Boundary-Layer Meteorol 138(3):433–451

    Article  Google Scholar 

  • Osuna P, Monbaliu J (2004) Wave-current interaction in the Southern North Sea. J Marine Syst 52(1–4):65–87

    Article  Google Scholar 

  • Osuna P, Wolf J (2005, June) A numerical study on the effect of wave-current interaction processes in the hydrodynamics of the Irish Sea. In Proceedings of the 5th International Symposium Ocean Wave Measurement and Analysis, Madrid

  • Palacios DM, Bograd SJ (2005) A census of tehuantepec and papagayo eddies in the northeastern tropical pacific. Geophysl Resh Lett 32(23):1–4

    Google Scholar 

  • Passalacqua GA, Sheinbaum J, Martinez JA (2016) Sea surface temperature influence on a winter cold front position and propagation: air-sea interactions of the ‘nortes’ winds in the gulf of mexico. Atmos Sci Lett 17(5):302–307. https://doi.org/10.1002/asl.655

    Article  Google Scholar 

  • Penven P, Halo I, Pous S, Marié L (2014) Cyclogeostrophic balance in the mozambique channel. J Geophys Res Oceans 119(2):1054–1067. https://doi.org/10.1002/2013jc009528

    Article  Google Scholar 

  • Polton JA, Lewis DM, Belcher SE (2005) The role of wave-induced coriolis-stokes forcing on the wind-driven mixed layer. J Phys Oceanogr 35(4):444–457. https://doi.org/10.1175/jpo2701.1

    Article  Google Scholar 

  • Ralph EA, Niiler PP (1999) Wind-driven currents in the tropical pacific. J Phys Oceanogr 29(9):2121–2129. https://doi.org/10.1175/1520-0485(1999)029$<$2121:wdcitt$>$2.0.co;2

  • Rascle N, Ardhuin F (2009) Drift and mixing under the ocean surface revisited: Stratified conditions and model-data comparisons. J Geophys Res 114(C2):1–17. https://doi.org/10.1029/2007jc004466

    Article  Google Scholar 

  • Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modell 70:174–188

    Article  Google Scholar 

  • Renault L, McWilliams JC, Penven P (2017) Modulation of the agulhas current retroflection and leakage by oceanic current interaction with the atmosphere in coupled simulations. J Phys Oceanogr 47(8):2077–2100. https://doi.org/10.1175/jpo-d-16-0168.1

    Article  Google Scholar 

  • Renault L, Molemaker MJ, McWilliams JC, Shchepetkin AF, Lemarié F, Chelton D, Illig S, Hall A (2016) Modulation of wind work by oceanic current interaction with the atmosphere. J Phys Oceanogr 46(6):1685–1704. https://doi.org/10.1175/jpo-d-15-0232.1

    Article  Google Scholar 

  • Reverdin G, Frankignoul C, Kestenare E, McPhaden MJ (1994) Seasonal variability in the surface currents of the equatorial pacific. J Geophys Res 99(C10):20323–20344. https://doi.org/10.1029/94jc01477

    Article  Google Scholar 

  • Richardson PL (1989) Worldwide ship drift distributions identify missing data. J Geophys Res 94(C5):6169–6176. https://doi.org/10.1029/jc094ic05p06169

    Article  Google Scholar 

  • Rio MH (2012) Use of Altimeter and Wind Data to Detect the Anomalous Loss of SVP-Type Drifter’s Drogue. J Atmos Oceanic Technol 29(11):1663–1674

    Article  Google Scholar 

  • Rio MH, Hernandez F (2003) High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J Geophys Res 108(C8):1–19

    Article  Google Scholar 

  • Rio MH, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41(2):8918–8925

    Article  Google Scholar 

  • Romero-Centeno R, Zavala-Hidalgo J, Gallegos A, O’Brien JJ (2003) Isthmus of tehuantepec wind climatology and ENSO signal. J Climate 16(15):2628–2639. https://doi.org/10.1175/1520-0442(2003)016$<$2628:iotwca$>$2.0.co;2

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057

    Article  Google Scholar 

  • Santiago-García MW, Parés-Sierra AF, Trasviña A (2019) Dipole-wind interactions under gap wind jet conditions in the Gulf of Tehuantepec, Mexico: A surface drifter and satellite database analysis. PLoS One 14(12):1–23. https://doi.org/10.1371/journal.pone.0226366

    Article  Google Scholar 

  • Schaeffer P, Faugére Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data. Marine Geodesy 35(sup1):3–19

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485. https://doi.org/10.1016/j.jcp.2007.01.037

    Article  Google Scholar 

  • Song JB (2009) The effects of random surface waves on the steady Ekman current solutions. Deep Sea Res Part I Oceanogr Res Papers 56(5):659–671. https://doi.org/10.1016/j.dsr.2008.12.014

    Article  Google Scholar 

  • Sudre J, Maes C, Garçon V (2013) On the global estimates of geostrophic and Ekman surface currents. Limnol Oceanogr Fluids Environm 3(1):1–20

    Article  Google Scholar 

  • The WAVEWATCH III Development Group (WW3DG). 2016. User manual and system documentation of WAVEWATCH III ® version 5.16. Technical Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 326 pp. + Appendices

  • Trasviña A, Barton E (2008) Summer circulation in the Mexican tropical pacific. Deep Sea Res Part I Oceanogr Res Papers 55(5):587–607. https://doi.org/10.1016/j.dsr.2008.02.002

    Article  Google Scholar 

  • Trasviña A, Barton ED, Brown J, Vélez HS, Kosro PM, Smith RL (1995) Offshore wind forcing in the Gulf of Tehuantepec, Mexico: The asymmetric circulation. J Geophys Res Oceans 100(C):20649–20663

    Article  Google Scholar 

  • Ubelmann C, Dibarboure G, Gaultier L, Ponte A, Ardhuin F, Ballarotta M, Faugere Y (2021) Reconstructing ocean surface current combining altimetry and future spaceborne doppler data. J Geophys Res 126:1–18

    Article  Google Scholar 

  • Wang J, Dong C, Yu K (2020) The influences of the Kuroshio on wave characteristics and wave energy distribution in the East China Sea. Deep Sea Res Part I Oceanogr Res Papers 158:103228. https://doi.org/10.1016/j.dsr.2020.103228

    Article  Google Scholar 

  • Willett CS, Leben RR, Lavín MF (2006) Eddies and tropical instability waves in the eastern tropical pacific: a review. Prog Oceanogr 69(2–4):218–238

    Article  Google Scholar 

  • Zamudio L, Hurlburt HE, Metzger EJ, Morey SL, O’Brien JJ, Tilburg C, Zavala-Hidalgo J (2006) Interannual variability of tehuantepec eddies. J Geophys Res Oceans 111(C5):1–21

    Article  Google Scholar 

Download references

Acknowledgements

This is a contribution of CONACYT–FOINS project 219582 through Mexico-Belgium bilateral co-operation. Special thanks to L.A. Julieta Castro for her support in logistics and administrative procedures throughout the project. Special thanks to Fernando Niño and Fabien Blarel for their help in providing the CTOH data. Support from Basic Science–CONACYT projects 155793, 168173, and 255377 are also acknowledged. Aimie Moulin was funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441 (CIGoM).

Funding

This is a contribution of CONACYT–FOINS project 219582 through Mexico–Belgium bilateral co-operation. Support from Basic Science–CONACYT projects 155793, 168173, and 255377. Aimie Moulin was funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441 (CIGoM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Pedro Osuna.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

All the authors agree with the full content of the document and the authorship order.

Consent for publication

All the authors agree with the full content of the document and its publication.

Additional information

Responsible Editor: Clemens Simmer, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrañaga, M., Osuna, P., Esquivel–Trava, B. et al. Comparing GlobCurrent dataset with numerical results from a high-resolution implementation of the POLCOMS-WAM coupled system under a strong gap wind over the Gulf of Tehuantepec. Meteorol Atmos Phys 135, 29 (2023). https://doi.org/10.1007/s00703-023-00967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00703-023-00967-0

Navigation