Skip to main content

Advertisement

Log in

Probable maximum precipitation (PMP) and flood (PMF) risk charts in Hodna basin, Algeria

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Flood magnitude, frequency and intensity are bound to increase in many parts of the world due to global warming and its consequent effect as climate change impacts. The main purpose of this paper is to apply the classical probable maximum precipitation and probable maximum flood methodologies leading to a new concept of risk level charts, which provide hydrograph time to peak probable maximum discharge after the beginning of precipitation, base time and peak discharge values. Dimensionless hydrograph methodology is employed for flood hydrograph analysis. The applications of probable maximum precipitation and probable maximum flood methodologies are presented for Algerian meteorology stations’ annual maximum daily precipitation amounts from 23 different locations at Hodna drainage basin in the north-eastern of Algeria. Classical probable maximum precipitation frequency factor is obtained for each meteorology station record, which are then converted to pointwise probable maximum flood amounts that are helpful to construct practically applicable flood charts. A new relationship is provided between probable maximum precipitation and the frequency factor for the study area. The efficiency factor is calculated for each station to understand whether there is a further possibility for extreme precipitation, and consequent flood occurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afzali-Gorouh Z, Bakhtiari B, Qaderi K (2018) Probable maximum precipitation estimation in a humid climate. Nat Hazard 18(11):3109–3119

    Article  Google Scholar 

  • Amroune A, Mihoub R, Enrico G, Carlos U-N (2020a) Groundwater flow dynamics and distribution of hydrochemical facies using GIS in Hodna Plain, M’Sila, Southeastern Algeria. Int J Sustain Dev Plan 15(6):789–800

    Article  Google Scholar 

  • Amroune A, Grine R, Guastaldi E (2020b) Flow deficit, evapotranspiration and infiltration in arid areas: the case of southern Tellian Atlas sub-basins, eastern Algeria. Journal of Fundamental and Applied Sciences, ISSN 1112–9867, Available online at http://www.jfas.info

  • Beauchamp J, Leconte R, Trudel M, Brissette F (2013) Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate. Water Resour Res 49(6):3852–3862

    Article  Google Scholar 

  • Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change 11(S1):164–188. https://doi.org/10.2166/wcc.2020.207

    Article  Google Scholar 

  • Bouznad I-E, Guastaldi E, Zirulia A, Brancale M, Barbagli A, Bengusmia D (2020) Trend analysis and spatiotemporal prediction of precipitation, temperature, and evapotranspiration values using the ARIMA models: case of the Algerian Highlands. Arab J Geosci 13:1281

    Article  Google Scholar 

  • Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28:6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1

    Article  Google Scholar 

  • CFGB (1994) Les crues de projet des barrages : méthode du Gradex. Design Flood Determination by the Gradex Method. 18ème congrès CIGB-ICOLD Bulletin du comité français de grands barrages, n°2, November 1994, 7–96

  • Chavan SR, Srinivas VV (2017) Regionalization based envelope curves for PMP estimation by Hershfield method. Int J Climatol 37(10):3767–3779

    Article  Google Scholar 

  • Chen J, Kavvas ML, Ishida K, Trinh T, Ohara N, Anderson ML, Chen ZR (2016) Role of snowmelt in determining whether the maximum precipitation always results in the maximum flood. J Hydrol Eng 21(10):04016032

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill Book Company, New York

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Whetton P (2007) Regional climate projections. Climate change, 2007: the physical science basis. Contribution of Working group I to the Fourth Assessment Report of the IPCC 11: 847–940

  • Clark C, Rakhecha PR (2002) Areal PMP distribution of one day to three-day duration over India. Meteorol Appl 9:399–406. https://doi.org/10.1017/S1350482702004024

    Article  Google Scholar 

  • Daba NN, Demissie TA, Sime CH (2021) Probable maximum precipitation estimation using Hershfield’s statistical method: a case of Dedessa sub-basin, Ethiopia. Model Earth Syst Environ 1–11.

  • Douglas EM, Barros AP (2003) Probable maximum precipitation estimation using multifractals: application in the eastern United States. J Hydrometeorol 4:1012–1024. https://doi.org/10.1175/15257541(2003)004%3c1012:PMPEUM%3e2.0.CO;2

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 8(2):150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  • Golding BL (1987) Discussion of “Transformation of PMP to PMF: Case Studies” by Bi-Huei Wang and Khalid Jawed (July, 1986, Vol. 112, No. 7). J Hydraul Eng 113(12):1576–1576

    Article  Google Scholar 

  • Guillot P, Duband D (1967) La Méthode du Gradex pour le calcul de la probabilité des crues à partir des pluies. IASH Publication, p 84

    Google Scholar 

  • Hadour A, Mahé G, Meddi M (2020) Watershed based hydrological evolution under climate change effect: An example from North Western Algeria. J Hyd Reg Stud 28:100671

  • Hansen EM, Schreiner LC, Miller JF (1982) Application of probable maximum precipitation estimates, United States east of the 105th meridian. Hydro-meteorological report 52. National Weather Service, Silver Spring

  • Hasbaia M, Paquier A, Herizi T (2017) Hydrological modeling of sediment transport in the semi-arid region, case of soubella watershed in Algeria. Water resources in arid areas: the way forward. Springer, Cham, pp 251–266. https://doi.org/10.1007/978-3-319-51856-5_14

    Chapter  Google Scholar 

  • Hershfield DM (1961) Estimating the probable maximum precipitation. J Hydraul Div Am Soc Civ Eng 87:99–106. https://doi.org/10.1061/JYCEAJ.0000651

    Article  Google Scholar 

  • Hershfield DM (1965) Method for estimating probable maximum precipitation. J Am Water Work Assoc 57(8):965–972. https://doi.org/10.1002/j.1551-8833.1965.tb01486.x

    Article  Google Scholar 

  • IPCC Working Group 1 I, Stocker TF, Qin D et al (2013) IPCC, 2013: climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. IPCC AR5:1535

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX—an international downscaling link to CMIP5. Clivar Exch 56:34–40

    Google Scholar 

  • Jothityangkoon C, Hirunteeyakul C, Boonrawd K, Sivapalan M (2013) Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment. J Hydrol 490:88–105

    Article  Google Scholar 

  • Kappel WD, Hultstrand DM, Muhlestein GA (2016) Updating PMP to provide better dam and spillway design. In: 2nd International Seminar on Dam Protection Against Overtopping, Fort Collins, Colorado, https://doi.org/10.25675/10217/179797

  • Kastali A, Zeroual A, Remaoun M, Serrano-Notivoli R, Moramarco T (2021) Design flood and flood-prone areas under rating curve uncertainty: area of Vieux-Ténès Algeria. J Hyd Eng 26(3):05020054. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002049

    Article  Google Scholar 

  • Koutsoyiannis D (1999) A probabilistic view of Hershfield’s method for estimating probable maximum precipitation. Water Resour Res 35:1313–1322. https://doi.org/10.1029/1999WR900002

    Article  Google Scholar 

  • Koutsoyiannis D, Papalexiou SS (2006) A probabilistic approach to the concept of probable maximum precipitation. Adv Geosci 7:51–54. https://doi.org/10.5194/adgeo-7-51-2006

    Article  Google Scholar 

  • Lagos-Zúñiga MA, Vargas MX (2014) PMP and PMF estimations in sparsely-gauged Andean basins and climate change projections. Hydrol Sci J 59(11):2027–2042

    Article  Google Scholar 

  • Lang M, Pobanz K, Renard B, Renouf E, Sauquet E (2010) Extrapolation of rating curves by hydraulic modelling, with application to flood frequency analysis. Hydrol Sci J 55:883–898. https://doi.org/10.1080/02626667.2010.504186

    Article  Google Scholar 

  • Lionello P, Scarascia L (2020) The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg Environ Change 20(1):1–16. https://doi.org/10.1007/s10113-020-01610-z

    Article  Google Scholar 

  • Merrikhpour MH, Rahimzadegan M, Najafi MR, Mahjouri N (2021) Probable maximum precipitation estimation over western Iran based on remote sensing observations: comparing deterministic and probabilistic approaches. Hydrol Sci J 66(1):165–178

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2006) A probabilistic approach to the concept of probable maximum precipitation. Adv Geosc 7:51–54. https://doi.org/10.5194/adgeo-7-51-2006

    Article  Google Scholar 

  • Paquet E, Gailhard J, Garçon R (2006) Evolution de la méthode du Gradex : approche par type de temps et modélisa-tion hydrologique. La Houille Blanche 5:80–90. https://doi.org/10.1051/lhb:2006091

    Article  Google Scholar 

  • Rakhecha P, Singh VP (2009) Applied hydrometeorology. Springer Science & Business Media

    Book  Google Scholar 

  • Rakhecha PR, Deshpande NR, Soman MK (1992) Probable maximum precipitation for a 2-day duration over the Indian Peninsula. Theor Appl Climatol 45:277–283. https://doi.org/10.1007/BF00865518

    Article  Google Scholar 

  • Remini B (2017) A new management approach of dams siltation. Larhyss J 31:51–81

    Google Scholar 

  • Salhi C, Touaibia B, Zeroual A (2013) Les réseaux de neurones et la régression multiple en prédiction de l’érosion spécifique: cas du bassin hydrographique Algérois-Hodna-Soummam (Algérie). Hyd Sci 58(7):1573–1580. https://doi.org/10.1080/02626667.2013.824090

    Article  Google Scholar 

  • Sarkar S, Maity R (2020) Increase in probable maximum precipitation in a changing climate over india. J Hyd 585:124806. https://doi.org/10.1016/j.jhydrol.2020.124806

  • Şen Z (2018) Flood modeling, prediction, and mitigation. Springer-Nature, Heidelberg, p 422. https://doi.org/10.1007/978-3-319-52356-9

    Book  Google Scholar 

  • Şen Z, As-Sefry S, Al-Kharity S (2016) Probable maximum precipitation and flood calculations for Jeddah area. Environ Earth Sci. https://doi.org/10.1007/s12665-016-6312-z

    Article  Google Scholar 

  • Shrestha S, Roachanakanan R (2021) Extreme climate projections under representative concentration pathways in the Lower Songkhram River Basin Thailand. Heliyon 7(2):e06146

    Article  Google Scholar 

  • Sirdaş S, Şen Z (2007) Determination of flash floods in western Arabian Peninsula. J Hyd Eng 12(6):676. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(676)

    Article  Google Scholar 

  • Snyder FF (1938) Synthetic unit hydrographs. Trans AGU 19(1):447–454. https://doi.org/10.1029/TR019i001p00447

    Article  Google Scholar 

  • Soil Conservation Service (SCS) (1971) National Engineering Handbook, Section 4: hydrology. USDA, Springfield

    Google Scholar 

  • Switanek MB, Troch PA, Castro CL, Leuprecht A, Chang HI, Mukherjee R, Demaria E (2017) Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes. Hydrol Earth Syst Sci 21(6):2649–2666

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

  • Thiébault S, Moatti JP (2016) The Mediterranean region under climate change: a scientific update. IRD Éditions. https://doi.org/10.4000/books.irdeditions.24549

  • Viard T, Vermeulen J, Lassus C, Paquet E, Rouillon N (2019) Outil d’estimation de la distribution complète des cotes de retenue atteintes en crue pour un barrage capacitif. La Houille Blanche 1:33–39

    Article  Google Scholar 

  • Wang BH, Jawed K (1986) Transformation of PMP to PMF: case studies. J Hydraul Eng 112(7):547–561

    Article  Google Scholar 

  • World Meteorological Organization WMO (2009) Manual on estimation of probable maximum precipitation. WMO‒No 1045, Geneva, Switzerland. ISBN:978-926-3101045-9

  • Zeroual A, Meddi M, Assani AA (2016) Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions. Water Resour Manag 30(9):3191–3205. https://doi.org/10.1007/s11269-016-1340-8

    Article  Google Scholar 

  • Zeroual A, Assani AA, Meddi M, Alkama R (2019) Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Clim Dyn 52:227–243. https://doi.org/10.1007/s00382-018-4128-0

    Article  Google Scholar 

  • Zeroual A, Meddi M, Bensaad S (2013) The impact of climate change on river flow in arid and semi-arid rivers in Algeria. Climate and Land-surface Changes in Hydrology Proceedings of H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, (IAHS Publ. 359)

  • Zeroual A, Assani AA, Meddi H, Bouabdelli S, Zeroual S, Alkama R (2020) Assessment of projected precipitations and temperatures change signals over algeria based on regional climate model: RCA4 simulations. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2020_526

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Zeroual.

Ethics declarations

Conflict of ınterest

On behalf of all authors, the corresponding author states that there is no confict of interest.

Additional information

Responsible Editor: Emilia Kyung Jin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeroual, S., Şen, Z., Boutaghane, H. et al. Probable maximum precipitation (PMP) and flood (PMF) risk charts in Hodna basin, Algeria. Meteorol Atmos Phys 134, 41 (2022). https://doi.org/10.1007/s00703-022-00879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00703-022-00879-5

Navigation