Skip to main content

Advertisement

Log in

Decreased plasma agmatine levels in autistic subjects

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Agmatine is a polyamine endogenously synthesized from arginine and is considered to be a new neurotransmitter. Agmatine has been implicated in the pathophysiology of several diseases such as anxiety disorder, depression, and schizophrenia. Agmatine also possesses anticonvulsant, neuroprotective, antiapoptotic, antioxidant, anxiolytic, and antidepressant effects. Furthermore, agmatine inhibits the nitric oxide synthase enzyme and exerts antagonist effects on NMDA, alpha-2, and imidazoline receptors. Considering these characteristics, the present study investigated whether agmatine plays a role in the pathogenesis of autistic spectrum disorders (ASDs). Therefore, plasma agmatine levels were evaluated in 34 patients with ASD and 28 non-ASD controls. Plasma agmatine levels were measured using the HPLC method. The study found remarkably lower agmatine levels in patients with ASD compared with the non-ASD control group (p < 0.001). These findings support the notion that agmatine might contribute to the pathogenesis of ASD and may serve as a new target for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akyol O, Zoroglu SS, Armutcu F, Sahin S, Gurel A (2004) Nitric oxide as a physiopathological factor in neuropsychiatric disorders. In Vivo 18(3):377–390

    CAS  PubMed  Google Scholar 

  • American Psychiatry Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatry Association, Washington, DC

    Book  Google Scholar 

  • Aricioglu F, Kan B, Yillar O, Korcegez E, Berkman K (2003) Effect of agmatine on electrically and chemically induced seizures in mice. Ann N Y Acad Sci 1009(1):141–146

    Article  CAS  PubMed  Google Scholar 

  • Arndt MA, Battaglia V, Parisi E, Lortie MJ, Isome M, Baskerville C et al (2009) The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Cell Physiol 296(6):C1411–C1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson GC (2012) Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders. Pharmacol Biochem Behav 100(4):850–854

    Article  CAS  PubMed  Google Scholar 

  • Çelik VK, Ersan EE, Kilicgun H, Kapancik S, Ersan S (2016) Agmatine mediated hypertonic stress development in schizophrenia: a novel study. Neuropsychiatry 6(5):184–189

    Article  Google Scholar 

  • Chauhan V, Chauhan A (2009) Chapter 10 abnormalities in membrane lipids, membrane-associated proteins, and signal transduction in autism. In: Chauhan A, Chauhan V, Brown WT (eds) Autism: oxidative stress, inflammation, and immune abnormalities. CRC Press, Boca Raton, pp 177–206

    Chapter  Google Scholar 

  • Choudhury PR, Lahiri S, Rajamma U (2012) Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharmacol Biochem Behav 100(4):841–849

    Article  CAS  PubMed  Google Scholar 

  • Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Guerranti R, Cortelazzo A, Gentile M, Zollo G, Durand T, Valacchi G, Rossi M, Hayek J (2013) Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism. Mediat Inflamm 2013:432616-1–432616-11

    Article  Google Scholar 

  • Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J, Ientile R (2011) Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Demehri S, Homayoun H, Honar H, Riazi K, Vafaie K, Roushanzamir F, Dehpour AR (2003) Agmatine exerts anticonvulsant effect in mice: modulation by α 2-adrenoceptors and nitric oxide. Neuropharmacology 45(4):534–542

    Article  CAS  PubMed  Google Scholar 

  • Erickson CA, Posey DJ, Stigler KA, Mullett J, Katschke AR, McDougle CJ (2007) A retrospective study of memantine in children and adolescents with pervasive developmental disorders. Psychopharmacology 191(1):141–147

    Article  CAS  PubMed  Google Scholar 

  • Essa MM, Braidy N, Vijayan KR, Subash S, Guillemin GJ (2013) Excitotoxicity in the pathogenesis of autism. Neurotox Res 23(4):393–400

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Piletz JE, Leblanc MH (2002) Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 52(4):606–611

    Article  CAS  PubMed  Google Scholar 

  • Freitas AE, Neis VB, Rodrigues ALS (2016) Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 26(12):1885–1899

    Article  CAS  PubMed  Google Scholar 

  • Gatto CL, Broadie K (2010) Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front Synaptic Neurosci 2:4

    PubMed  PubMed Central  Google Scholar 

  • Gawali NB, Chowdhury AA, Kothavade PS, Bulani VD, Nagmoti DM, Juvekar AR (2016) Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice. Eur J Pharmacol 770:165–171

    Article  CAS  PubMed  Google Scholar 

  • Ghaleiha A, Asadabadi M, Mohammadi MR, Shahei M, Tabrizi M, Hajiaghaee R, Akhondzadeh S (2013) Memantine as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Int J Neuropsychopharmacol 16(4):783–789

    Article  CAS  PubMed  Google Scholar 

  • Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G, Pipitone E (2013) Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One 8(6):e66418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong ZH, Li YF, Zhao N, Yang HJ, Su RB, Luo ZP, Li J (2006) Anxiolytic effect of agmatine in rats and mice. Eur J Pharmacol 550(1):112–116

    Article  CAS  PubMed  Google Scholar 

  • Grillo MA, Colombatto S (2004) Metabolism and function in animal tissues of agmatine, a biogenic amine formed from arginine. Amino Acids 26(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Halaris A, Plietz J (2007) Agmatine. CNS Drugs 21(11):885–900

    Article  CAS  PubMed  Google Scholar 

  • Halaris A, Zhu H, Feng Y, Piletz JE (1999) Plasma agmatine and platelet imidazoline receptors in depression. Ann N Y Acad Sci 881(1):445–451

    Article  CAS  PubMed  Google Scholar 

  • Hassan TH, Abdelrahman HM, Fattah NRA, El-Masry NM, Hashim HM, El-Gerby KM, Fattah NRA (2013) Blood and brain glutamate levels in children with autistic disorder. Res Autism Spectr Disord 7(4):541–548

    Article  Google Scholar 

  • Hussman JP (2001) Letters to the editor: suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 31(2):247–248

    Article  CAS  PubMed  Google Scholar 

  • Jansson LC, Åkerman KE (2014) The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm 121(8):819–836

    Article  CAS  PubMed  Google Scholar 

  • Kastner T, Walsh K, Shulman L, Alam F, Flood S (2016) Ketamine and the core symptoms of autism. Int J Disabil Hum Dev 15(1):121–123

    Article  Google Scholar 

  • Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, Shin CY (2017) Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 113:71–81

    Article  CAS  PubMed  Google Scholar 

  • Lavinsky D, Arteni NS, Netto CA (2003) Agmatine induces anxiolysis in the elevated plus maze task in adult rats. Behav Brain Res 141(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Choi SY, Kim E (2015) NMDA receptor dysfunction in autism spectrum disorders. Curr Opin Pharmacol 20:8–13

    Article  CAS  PubMed  Google Scholar 

  • Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263(5149):966–969

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Jing Y, Collie ND, Dean B, Bilkey DK, Zhang H (2016) Altered brain arginine metabolism in schizophrenia. Transl Psychiatry 6(8):e871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manent JB, Represa A (2007) Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration. Neuroscientist 13(3):268–279

    Article  CAS  PubMed  Google Scholar 

  • Ming X, Gordon E, Kang N, Wagner GC (2008) Use of clonidine in children with autism spectrum disorders. Brain Dev 30(7):454–460

    Article  PubMed  Google Scholar 

  • Moretti M, Matheus FC, de Oliveira PA, Neis VB, Ben J, Walz R, Prediger RD (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci (Elite Ed) 6:341–359

    Article  Google Scholar 

  • Olmos G, DeGregorio-Rocasolano N, Regalado MP, Gasull T, Boronat MA, Trullas R, García-Sevilla JA (1999) Protection by imidazol (ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 127(6):1317–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owley T, Salt J, Guter S, Grieve A, Walton L, Ayuyao N, Cook EH Jr (2006) A prospective, Open-Label Trial of memantine in the treatment of cognitive, behavioral, and memory dysfunction in pervasive developmental disorders. J Child Adolesc Psychopharmacol 16(5):517–524

    Article  PubMed  Google Scholar 

  • Piletz JE, May PJ, Wang G, Zhu H (2003) Agmatine crosses the blood–brain barrier. Ann N Y Acad Sci 1009(1):64–74

    Article  CAS  PubMed  Google Scholar 

  • Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Liu P (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18(17):880–893

    Article  CAS  PubMed  Google Scholar 

  • Regunathan S, Dozier D, Takkalapalli R, Phillips WJ (2009) Agmatine levels in the cerebrospinal fluid of normal human volunteers. J Pain Palliat Care Pharmacother 23(1):35–39

    Article  PubMed  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21(5):187–193

    Article  CAS  PubMed  Google Scholar 

  • Rojas DC (2014) The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J Neural Transm 121(8):891–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuber F (1989) Influence of polyamines on membrane functions. Biochem J 260(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shende VM, Patel FR (2014) Agmatine ameliorates social isolation induced obsessive-compulsive behavior in mice. J Glob Trends Pharm Sci 5(4):2048–2051

    Google Scholar 

  • Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H, Suzuki K (2011) Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS One 6(10):e25340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, Matsuzaki H (2006) Increased serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1472–1477

    Article  CAS  PubMed  Google Scholar 

  • Söğüt S, Zoroğlu SS, Özyurt H, Yılmaz HR, Özuğurlu F, Sivaslı E, Tarakçıoğlu M (2003) Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 331(1):111–117

    PubMed  Google Scholar 

  • Su RB, Wei XL, Zheng JQ, Liu Y, Lu XQ, Li J (2004) Anticonvulsive effect of agmatine in mice. Pharmacol Biochem Behav 77(2):345–349

    Article  CAS  PubMed  Google Scholar 

  • Sucuoglu B, Oktem F, Akkok F, Gokler B (1996) A study of the scales for the assessment of the children with autism. Psikiyatri Psikoloji Psikofarmakoloji 4:116–121

    Google Scholar 

  • Sweeten TL, Posey DJ, Shankar S, McDougle CJ (2004) High nitric oxide production in autistic disorder: a possible role for interferon-γ. Biol Psychiatry 55(4):434–437

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53(1):749–790

    Article  CAS  PubMed  Google Scholar 

  • Terán Y, Ponce O, Betancourt L, Hernández L, Rada P (2012) Amino acid profile of plasma and cerebrospinal fluid in preeclampsia. Pregnancy Hypertens Int J Womens Cardiovasc Health 2(4):416–422

    Google Scholar 

  • Uzbay IT (2009) New pharmacological approaches to the treatment of schizophrenia. Turk Psikiyatri Derg 20(2):175–182

    PubMed  Google Scholar 

  • Uzbay TI (2012a) The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 36(1):502–519

    Article  CAS  PubMed  Google Scholar 

  • Uzbay T (2012b) A new target for diagnosis and treatment of CNS disorders: agmatinergic system. Curr Med Chem 19(30):5116–5121

    Article  CAS  PubMed  Google Scholar 

  • Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, Kirli S (2013) Increased plasma agmatine levels in patients with schizophrenia. J Psychiatr Res 47(8):1054–1060

    Article  PubMed  Google Scholar 

  • Uzunova G, Hollander E, Shepherd J (2014) The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile × syndrome. Curr Neuropharmacol 12(1):71–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY (2006) Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 1084(1):210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Alberts I, Li X (2014) The apoptotic perspective of autism. Int J Dev Neurosci 36:13–18

    Article  PubMed  Google Scholar 

  • Yang P, Chang CL (2014) Glutamate-mediated signaling and autism spectrum disorders: emerging treatment targets. Curr Pharm Des 20(32):5186–5193

    Article  CAS  PubMed  Google Scholar 

  • Yang XC, Reis DJ (1999) Agmatine selectively blocks the N-methyl-d-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 288(2):544–549

    CAS  PubMed  Google Scholar 

  • Zhu MY, Wang WP, Bissette G (2006) Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 141(4):2019–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu MY, Wang WP, Cai ZW, Regunathan S, Ordway G (2008) Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur J Neurosci 27(6):1320–1332

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was supported by Ordu University Scientific Research Project (Project no: AR-1520).

Author information

Authors and Affiliations

Authors

Contributions

Dr. EE produced the idea and planned the study. In addition, he recruited the subjects, performed clinical and diagnostic evaluation and statistical analyses, and wrote the manuscript. Dr. İİ studied the samples with HPLC and contributed to the manuscript writing process. Both authors approved the final version of the manuscript.

Corresponding author

Correspondence to Erman Esnafoglu.

Ethics declarations

Conflict of interest

The authors report no financial interest or potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esnafoglu, E., İrende, İ. Decreased plasma agmatine levels in autistic subjects. J Neural Transm 125, 735–740 (2018). https://doi.org/10.1007/s00702-017-1836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1836-2

Keywords

Navigation