Skip to main content
Log in

Highly dispersive AuNCs/ChOx@ZIF-8/PEI nanocomplexes for fluorescent detection of cholesterol in human serum

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoclusters (AuNCs) are widely used in the fluorescence detection of biomolecules in human serum due to their good fluorescence properties, low toxicity, and better biocompatibility. However, the weak fluorescence intensity of AuNCs limits the fluorescence detection of molecules within a wide concentration range. It is reported that coating AuNCs in ZIF-8 with adjustable pore size can effectively improve the fluorescence intensity of AuNCs and broaden the detection range. And the AuNCs wrapped in the gaps of ZIF-8 can prevent the fluorescence quenching caused by the aggregation of AuNCs. However, ZIF-8 has high crystallinity, poor dispersion, and easy deposition, which reduces the fluorescence stability of the detection system and affects the detection. Based on the above research, the highly hydrophilic polymer PEI was modified to the surface of ZIF-8, and a kind of nanocomposite material AuNCs/ChOx@ZIF-8/PEI was obtained by co-encapsulating AuNCs prepared with glutathione as a ligand and cholesterol oxidase (ChOx) into ZIF-8 modified with PEI. The composite material emits strong red light at 650 nm under the excitation of 395-nm light, and the system can sensitively detect cholesterol (Chol) in human serum. Compared with other materials, the PEI-modified composite has better solubility and stability, so the detection effect of Chol is better. Encapsulation of ChOx in the ZIF-8 shell can protect the enzyme and increase the local concentration of ChOx, thereby speeding up the reaction rate. Compared with free AuNCs/ChOx, the quenching rate of AuNCs/ChOx@ZIF-8/PEI system is doubled. Secondly, the addition of Fe2+ to the detection process results in higher quenching rate and detection sensitivity. The system can detect Chol in the concentration range 0.1–2.4 μM, with a detection limit of 0.073 μM. The determination is a fast and sensitive strategy. In addition, the practicability of this assay in the detection of Chol in human serum has been verified. Due to its selectivity and sensitivity, it has potential application value in clinical diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simon K, Kowalewski W, Dobracki W (1987) Evaluation of the indicators of arteriosclerosis risk factors: cholesterol:HDL cholesterol and LDL cholesterol: HDL cholesterol in acute and chronic diseases of the liver. Przegl Lek 44(11):746–750

    CAS  PubMed  Google Scholar 

  2. Vitali C, Remaley AT, Cuchel M (2018) Is low-density lipoprotein cholesterol the key to interpret the role of lecithin: cholesterol acyltransferase in atherosclerosis? Circulation 138(10):1008–1011

    Article  Google Scholar 

  3. Doggen CJM, Smith NL, Lemaitre RN, Heckbert SR, Rosendaal FR, Psaty BM (2004) Serum lipid levels and the risk of venous thrombosis. Arterioscl Throm Vas 24(10):1970–1975

    Article  CAS  Google Scholar 

  4. Chupin SP, Tiuriumin IL, Krikshtopaitis MI, Nikiforov SB, Salenko VL, Kun OV, Vialkov AI, Dmitriev AE, Gritskikh GL (1992) Role of cholestanol in the pathogenesis of cholesterol cholelithiasis. Ross Med Zh:Organ Ministerstva Zdravookhraneniia RSFSR 1:11–13

    Google Scholar 

  5. Koletzko B (2015) Hypercholesterolemia. Pediatric nutrition in practice, 2nd edn, World Rev Nutr Diet. Karger Publications 113:234–238. https://doi.org/10.1159/000375191

  6. Searcy RL, Craig RG, Bergquist LM (1961) Chromatographic estimations of serum lipoprotein cholesterol. Clin Chim Acta 6:475–480

    Article  CAS  Google Scholar 

  7. Bhandaru RR, Srinivasan SR, Pargaonkar PS, Berenson GS (1977) A simplified colorimetric micromethod for determination of serum cholesterol. Lipids 12(12):1078–1080

    Article  CAS  Google Scholar 

  8. Manasterski A, Zak B (1973) Spectrophotometric study of bromide interference in a cholesterol reaction. Microchem J 18(1):18–28

    Article  CAS  Google Scholar 

  9. Obermer E, Milton R (1933) A micro-photometric method for the determination of free cholesterol and cholesterol esters in blood-plasma. Biochem J 27(2):345–350

    Article  CAS  Google Scholar 

  10. Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ (2011) Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron 26(5):1965–1969

    Article  CAS  Google Scholar 

  11. Liu JM, Cui ML, Jiang SL, Wang XX, Lin LP, Jiao L, Zhang LH, Zheng ZY (2013) BSA-protected gold nanoclusters as fluorescent sensor for selective and sensitive detection of pyrophosphate. Anal Methods 5(16):3942–3947

    Article  CAS  Google Scholar 

  12. Wu H, Qiao J, Hwang YH, Xu CN, Yu T, Zhang RY, Cai HW, Kim DP, Qi L (2019) Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Talanta 200:547–552

    Article  CAS  Google Scholar 

  13. Li D, Chen ZH, Yang TZ, Wang H, Lu N, Mei XF (2016) Green synthesis of highly fluorescent AuNCs with red emission and their special sensing behavior for Al3+. RSC Adv 6(23):19182–19189

    Article  CAS  Google Scholar 

  14. Chen LY, Wang CW, Yuan ZQ, Chang HT (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87(1):216–229

    Article  CAS  Google Scholar 

  15. Cui ML, Zhao Y, Song QJ (2014) Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trac-Trend Anal Chem 57:73–82

    Article  CAS  Google Scholar 

  16. Guo L, Liang MS, Wang XL, Kong RM, Chen G, Xia L, Qu FL (2020) The role of l-histidine as molecular tongs: a strategy of grasping Tb3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chem Sci 11(9):2407–2413

    Article  CAS  Google Scholar 

  17. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Xamena F, Gascon J (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14(1):48–55

    Article  CAS  Google Scholar 

  18. Zhang ZJ, Xian SK, Xi HX, Wang HH, Li Z (2011) Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chem Eng Sci 66(20):4878–4888

    Article  CAS  Google Scholar 

  19. Lu KD, Aung T, Guo NN, Weichselbaum R, Lin WB (2018) Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater 30(37):1707634

    Article  Google Scholar 

  20. Fan C, Lv XX, Liu FJ, Feng LP, Liu M, Cai YY, Liu H, Wang JY, Yang YL, Wang H (2018) Silver nanoclusters encapsulated into metal-organic frameworks with enhanced fluorescence and specific ion accumulation toward the microdot array-based fluorimetric Analysis of Copper in Blood. ACS Sensors 3(2):441–450

    Article  CAS  Google Scholar 

  21. Cai Y, Zhu HS, Zhou WC, Qiu ZY, Chen CC, Qileng AR, Li KS, Liu YJ (2021) Capsulation of AuNCs with AIE effect into metal-organic framework for the marriage of a fluorescence and colorimetric biosensor to detect organophosphorus pesticides. Anal Chem 93(19):7275–7282

    Article  CAS  Google Scholar 

  22. Wu XL, Ge J, Yang C, Hou M, Liu Z (2015) Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem Commun 51(69):13408–13411

    Article  CAS  Google Scholar 

  23. Chen WH, Vazquez-Gonzalez M, Zoabi A, Abu-Reziq R, Willner I (2018) Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat Catal 1(9):689–695

    Article  CAS  Google Scholar 

  24. Guo ML, Chi JT, Zhang C, Wang ML, Liang H, Hou JY, Ai SY, Li XY (2021) A simple and sensitive sensor for lactose based on cascade reactions in Au nanoclusters and enzymes co-encapsulated metal-organic frameworks. Food Chem 339:127863

    Article  CAS  Google Scholar 

  25. Chi JT, Guo ML, Zhang C, Zhang YH, Ai SY, Hou JY, Wu P, Li XY (2020) Glucose oxidase and Au nanocluster co-encapsulated metal-organic frameworks as a sensitive colorimetric sensor for glucose based on a cascade reaction. New J Chem 44(31):13344–13349

    Article  CAS  Google Scholar 

  26. Xian SK, Xu F, Ma C, Wu Y, Xia QB, Wang HH, Li Z (2015) Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chem Eng J 280:363–369

    Article  CAS  Google Scholar 

  27. Silva JSF, Silva JYR, de Sa GF, Araujo SS, Gomes MA, Ronconi CM, Santos TC, Junior SA (2018) Multifunctional system polyaniline-decorated ZIF-8 nanoparticles as a new chemo-photothermal platform for cancer therapy. ACS Omega 3(9):12147–12157

    Article  CAS  Google Scholar 

  28. Wang HH, Li T, Li JW, Tong WJ, Gao CY (2019) One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: size control, surface modification and drug encapsulation. Colloid Surface A 568:224–230

    Article  CAS  Google Scholar 

  29. Zheng CL, Ji ZX, Zhang J, Ding SN (2014) A fluorescent sensor to detect sodium dodecyl sulfate based on the glutathione-stabilized gold nanoclusters/poly diallyldimethylammonium chloride system. Analyst 139(13):3476–3480

    Article  CAS  Google Scholar 

  30. Zhu GX, Zhang MZ, Lu LD, Lou XP, Dong ML, Zhu LQ (2019) Metal-organic framework/enzyme coated optical fibers as waveguide-based biosensors. Sensor Actuat B-Chem 288:12–19

    Article  CAS  Google Scholar 

  31. Tan QQ, Zhang RR, Zhang GY, Liu XY, Qu FL, Lu LM (2020) Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+. Anal Bioanal Chem 412(6):1317–1324

    Article  CAS  Google Scholar 

  32. Tian R, Zhang ST, Li MW, Zhou YQ, Lu B, Yan DP, Wei M, Evans DG, Duan X (2015) Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence. Adv Funct Mater 25(31):5006–5015

    Article  CAS  Google Scholar 

  33. Jiao CL, Li ZD, Li XX, Wu M, Jiang HQ (2021) Improved CO2/N2 separation performance of pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Sep and Purif Technol 259:118190

    Article  CAS  Google Scholar 

  34. Hui SH, Liu QQ, Huang ZZ, Yang J, Liu YM, Jiang S (2020) Gold nanoclusters-decorated zeolitic imidazolate frameworks with reactive oxygen species generation for photoenhanced antibacterial study. Bioconjugate Chem 31(10):2439–2445

    Article  CAS  Google Scholar 

  35. Liu D, Shang H (2014) Copper nanoclusters-based nanoprobes for colorimetric detection of cholesterol in milk. Food Sci 35(12):143–147

    Google Scholar 

  36. Kumar A, Kumari A, Asu S, Laha D, Sahu SK (2019) Synthesis of CDs from beta-cyclodextrin for smart utilization in visual detection of cholesterol and cellular imaging. ChemistrySelect 4(48):14222–14227

    Article  CAS  Google Scholar 

  37. Tig GA, Zeybek DK, Pekyardimci S (2016) Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode. Chem Pap 70(6):695–705

    Article  CAS  Google Scholar 

  38. Lin XY, Ni YN, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sensor Actuat B-Chem 233:100–106

    Article  CAS  Google Scholar 

  39. Soylemez S, Kanik FE, Nurioglu AG, Akpinar H, Toppare L (2013) A novel conducting copolymer: investigation of its matrix properties for cholesterol biosensor applications. Sensor Actuat B-Chem 182:322–329

    Article  CAS  Google Scholar 

  40. Li Y, Li SJ, Bao M, Zhang LQ, Carraro C, Maboudian R, Liu AR, Wei W, Zhang YJ, Liu SQ (2021) Pd nanoclusters confined in ZIF-8 matrixes for fluorescent detection of glucose and cholesterol. ACS Appl Nano Mater 4(9):9132–9142

    Article  CAS  Google Scholar 

  41. Wu YZ, Ma YJ, Xu GH, Wei FD, Ma YS, Song Q, Wang X, Tang T, Song YY, Shi ML, Xu XM, Hu Q (2017) Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensor Actuat B-Chem 249:195–202

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 11774048) and the Project from Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education (No. 130028723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Zhang, W., Xue, F. et al. Highly dispersive AuNCs/ChOx@ZIF-8/PEI nanocomplexes for fluorescent detection of cholesterol in human serum. Microchim Acta 189, 203 (2022). https://doi.org/10.1007/s00604-022-05306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05306-5

Keywords

Navigation