Skip to main content
Log in

Modification of glassy carbon electrode with manganese cobalt oxide-cubic like structures incorporated graphitic carbon nitride sheets for the voltammetric determination of 2,4,6 -trichlorophenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Novel cube-like transition metal oxide embedded on graphitic carbon nitride (MCO@GCN) formed a hybrid composite via hydrothermal assisted sonochemical synthesis. The synthesized composite was examined with various physical characterizations such as morphological SEM, EDX, XRD, and FT-IR spectroscopy. The electrocatalytic activity of MCO@GCN composite was further investigated when used  to modify a glassy carbon electrode (GCE). The electrochemical sensor was investigated using modified MCO@GCN/GCE towards environmental pollutant 2,4,6-trichlorophenol (2,4,6-TCP) detection with at a potential of (+ 0.654 V vs Ag/AgCl) in pH-7. The structural features have favored a high charge transfer ratio with excellent conductivity which showed a low detection limit (LOD) of 0.0068 μM and sensitivity of 23.57 μA·μM−1·cm−2 comprising a wide linear working range of 0.01–1720 μM by using differential pulse voltammetry. Besides, the MCO@GCN/GCE displayed excellent selectivity , repeatability, reproducibility, storage, and operational stability. Notably, the proposed MCO@GCN/GCE was validated with different environmental samples (tap, river, and industrial water) with RSD 0.62–2.86% and 96.51–99.66% (n = 3) recovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gonçalves JM, Rocha DP, Silva MN, Martins PR, Nossol E, Angnes L, Rout CS, Munoz RA (2021) Feasible strategies to promote the sensing performances of spinel MCo2O4 (M= Ni, Fe, Mn, Cu and Zn) based electrochemical sensors: a review. J Mater Chem C 9(25):7852–7887. https://doi.org/10.1039/D1TC01550H

    Article  Google Scholar 

  2. Tamilalagan E, Selvi SV, Chen S-M, Akilarasan M, Maheshwaran S, Chen T-W, Al-Mohaimeed AM, Al-onazi WA, Elshikh MS, Liu X (2021) Fabrication of pn Junction (Ni/Zn) O and Reduced Graphene Oxide (rGO) Nanocomposites for the Electrocatalysis of Analgesic Drug (Acetaminophen) Detection in Pharmaceutical and Biological Samples. J Electrochem Soc 168(3):036501. https://doi.org/10.1149/1945-7111/abe6eb

    Article  CAS  Google Scholar 

  3. Vinoth S, Govindasamy M, Wang S-F, Alothman AA, Alshgari RA (2021) Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine. Microchim Acta 188(4):1–10. https://doi.org/10.1007/s00604-021-04768-3

    Article  CAS  Google Scholar 

  4. Sriram B, Baby JN, Hsu Y-F, Wang S-F, Benadict Joseph X, George M, Veerakumar P, Lin KC (2021) MnCo2O4 Microflowers anchored on P-doped g-C3N4 nanosheets as an electrocatalyst for voltammetric determination of the antibiotic drug sulfadiazine. ACS Appl Electron Mater 3(9):3915–3926. https://doi.org/10.1021/acsaelm.1c00506

    Article  CAS  Google Scholar 

  5. Che H, Wang Y, Mao Y (2016) Novel flower-like MnCo2O4 microstructure self-assembled by ultrathin nanoflakes on the microspheres for high-performance supercapacitors. J Alloy Compd 680:586–594. https://doi.org/10.1016/j.jallcom.2016.04.116

    Article  CAS  Google Scholar 

  6. Tomon C, Sarawutanukul S, Phattharasupakun N, Duangdangchote S, Chomkhundtod P, Kidkhunthod P, Sawangphruk M (2021) Insight into photoelectrocatalytic mechanisms of bifunctional cobaltite hollow-nanofibers towards oxygen evolution and oxygen reduction reactions for high-energy zinc-air batteries. Electrochim Acta 392:139022. https://doi.org/10.1016/j.electacta.2021.139022

    Article  CAS  Google Scholar 

  7. Ameri B, Davarani SSH, Moazami HR, Darjazi H (2017) Cathodic electrosynthesis of ZnMn2O4/Mn3O4 composite nanostructures for high performance supercapacitor applications. J Alloy Compd 720:408–416. https://doi.org/10.1016/j.jallcom.2017.05.271

    Article  CAS  Google Scholar 

  8. Arbaz SJ, Sekhar SC, Nagaraju G, Ramulu B, Yu JS (2021) Rational Design of Bimetallic Oxide Multi-Nanoarchitectures for High-Rate and Durable Hybrid Supercapacitors. Adv Mater Technol 6(1):2000793. https://doi.org/10.1002/admt.202000793

    Article  CAS  Google Scholar 

  9. Balaji TE, Tanaya Das H, Maiyalagan T (2021) Recent trends in Bimetallic Oxides and their composites as electrode materials for Supercapacitor applications. ChemElectroChem 8(10):1723–1746. https://doi.org/10.1002/celc.202100098

    Article  CAS  Google Scholar 

  10. Balaji R, Renganathan V, Chen SM, Singh V (2019) Selective and high-performance electrochemical sensor for cadmium ions based on intimate binary spinel CoMn2O4 nanostructures. ChemistrySelect 4(45):13123–13130. https://doi.org/10.1002/slct.201902573

    Article  CAS  Google Scholar 

  11. Muthumariappan A, Sakthivel K, Chen S-M, Chen T-W, Elgorban AM, Elshikh MS, Marraiki N (2020) Evaluating an effective electrocatalyst for the rapid determination of triptan drug (Maxalt™) from (mono and binary) transition metal (Co, Mn, CoMn, MnCo) oxides via electrochemical approaches. New J Chem 44(2):605–613. https://doi.org/10.1039/C9NJ04462K

    Article  CAS  Google Scholar 

  12. Zaouali A, Dhahri A, Boughariou A, Dhahri E, Barillé R, Costa B, Khirouni K (2021) High electrical conductivity at room temperature of MnCo2O4 cobaltite spinel prepared by sol–gel method. J Mater Sci: Mater Electron 32(1):1221–1232. https://doi.org/10.1007/s10854-020-04895-2

    Article  CAS  Google Scholar 

  13. Krishnan SG, Harilal M, Arshid N, Jagadish P, Khalid M, Li LP (2021) Rapid microwave-assisted synthesis of MnCo2O4 nanoflakes as a cathode for battery-supercapacitor hybrid. J Energy Storage 44:103566. https://doi.org/10.1016/j.est.2021.103566

    Article  Google Scholar 

  14. Umesh NM, Wang S-F, Kameoka S (2022) Promotional effects of Pt–CeO2 fabricated by hydrothermal leaching of Al78Ce22-xPtx (x= 0, 0.1) intermetallic compound for efficient catalytic CO oxidation. J Solid State Chem 309:122984. https://doi.org/10.1016/j.jssc.2022.122984

  15. Vinoth S, Govindasamy M, Wang S-F, Anandaraj S (2020) Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications. Ultrason Sonochem 64:105036. https://doi.org/10.1016/j.ultsonch.2020.105036

    Article  CAS  PubMed  Google Scholar 

  16. Balram D, Lian K-Y, Sebastian N (2018) Synthesis of a functionalized multi-walled carbon nanotube decorated ruskin michelle-like ZnO nanocomposite and its application in the development of a highly sensitive hydroquinone sensor. Inorg Chem Front 5(8):1950–1961. https://doi.org/10.1039/C8QI00440D

    Article  CAS  Google Scholar 

  17. Vinoth S, Govindasamy M, Wang S-F, ALOthman ZA, Alshgari RA, Ouladsmane M (2021) Fabrication of strontium molybdate incorporated with graphitic carbon nitride composite: high-sensitive amperometric sensing platform of food additive in foodstuffs. Microchem J 167:106307. https://doi.org/10.1016/j.microc.2021.106307

    Article  CAS  Google Scholar 

  18. Gokulkumar K, Sundramoorthy AK, Wang S-F, Harikrishnan A, Alshgari RA (2021) High-Performance Electrochemical Sensor Based on Yttrium Sulfide Nanoparticles Decorated Carbon Nitride Heterostructure for Highly Sensitive Detection of Antimicrobial Drug in Biological Samples. J Electrochem Soc 168(7):077516. https://doi.org/10.1149/1945-7111/ac15bc

    Article  CAS  Google Scholar 

  19. Ganesan S, Sivam S, Elancheziyan M, Senthilkumar S, Ramakrishan SG, Soundappan T, Ponnusamy VK (2022) Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters. Environ Pollut 293:118556. https://doi.org/10.1016/j.envpol.2021.118556

    Article  CAS  PubMed  Google Scholar 

  20. Stroyuk O, Raievska O, Zahn DR (2020) Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Adv 10(56):34059–34087. https://doi.org/10.1039/D0RA05580H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Velmurugan S, Yang TC-K (2020) Fabrication of High-Performance Molybdenum Disulfide-Graphitic Carbon Nitride p–n Heterojunction Stabilized rGO/ITO Photoelectrode for Photoelectrochemical Determination of Dopamine. ACS Appl Electron Mater 2(9):2845–2856. https://doi.org/10.1021/acsaelm.0c00500

    Article  CAS  Google Scholar 

  22. Rajaji U, Chinnapaiyan S, Chen S-M, Govindasamy M, Alothman AA, Alshgari RA (2021) Bismuth telluride decorated on graphitic carbon nitrides based binary nanosheets: Its application in electrochemical determination of salbutamol (feed additive) in meat samples. J Hazard Mater 413:125265. https://doi.org/10.1016/j.jhazmat.2021.125265

    Article  CAS  PubMed  Google Scholar 

  23. Rajaji U, Chinnapaiyan S, Chen S-M, Govindasamy M, Oliveira Filho JId, Khushaim W, Mani V (2021) Design and fabrication of yttrium ferrite garnet-embedded graphitic carbon nitride: a sensitive electrocatalyst for smartphone-enabled point-of-care pesticide (mesotrione) analysis in food samples. ACS Appl Mater Interfaces 13(21):24865–24876. https://doi.org/10.1021/acsami.1c04597

    Article  CAS  PubMed  Google Scholar 

  24. Arul P, Huang S-T, Mani V, Hu Y-C (2021) Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: A dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochim Acta 381:138280. https://doi.org/10.1016/j.electacta.2021.138280

    Article  CAS  Google Scholar 

  25. Theyagarajan K, Elancheziyan M, Aayushi PS, Thenmozhi K (2020) Facile strategy for immobilizing horseradish peroxidase on a novel acetate functionalized ionic liquid/MWCNT matrix for electrochemical biosensing. Int J Biol Macromol 163:358–365. https://doi.org/10.1016/j.ijbiomac.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  26. Theyagarajan K, Yadav S, Satija J, Thenmozhi K, Senthilkumar S (2020) Gold nanoparticle-redox ionic liquid based nanoconjugated matrix as a novel multifunctional biosensing interface. ACS Biomater Sci Eng 6(11):6076–6085. https://doi.org/10.1021/acsbiomaterials.0c00807

    Article  CAS  PubMed  Google Scholar 

  27. Arul P, John SA (2019) Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim Acta 306:254–263. https://doi.org/10.1016/j.electacta.2019.03.117

    Article  CAS  Google Scholar 

  28. Buledi JA, Solangi AR, Memon SQ, Haider SI, Ameen S, Khand NH, Bhatti A, Qambrani N (2021) Nonenzymatic Electrochemical Detection of 2, 4, 6-Trichlorophenol Using CuO/Nafion/GCE: A Practical Sensor for Environmental Toxicants. Langmuir 37(10):3214–3222. https://doi.org/10.1021/acs.langmuir.1c00165

    Article  CAS  PubMed  Google Scholar 

  29. Gopi PK, Ravikumar CH, Chen S-M, Chen T-W, Ali MA, Al-Hemaid FM, El-Shikh MS, Alnakhli A (2021) Tailoring of bismuth vanadate impregnated on molybdenum/graphene oxide sheets for sensitive detection of environmental pollutants 2, 4, 6 trichlorophenol. Ecotoxicol Environ Saf 211:111934. https://doi.org/10.1016/j.ecoenv.2021.111934

    Article  CAS  PubMed  Google Scholar 

  30. Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S, (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B 47(4):219–256. https://doi.org/10.1016/j.apcatb.2003.09.010

    Article  CAS  Google Scholar 

  31. Akilarasan M, Tamilalagan E, Chen S-M, Maheshwaran S, Chen T-W, Al-Mohaimeed AM, Al-Onazi WA, Elshikh MS (2021) An eco-friendly low-temperature synthetic approach towards micro-pebble-structured GO@ SrTiO3 nanocomposites for the detection of 2, 4, 6-trichlorophenol in environmental samples. Microchim Acta 188(3):1–10. https://doi.org/10.1007/s00604-021-04729-w

    Article  CAS  Google Scholar 

  32. Lamba J, Anand S, Dutta J, Chatterjee S, Nagar S, Celin SM, Rai PK (2021) Study on aerobic degradation of 2, 4, 6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site. Environ Monit Assess 193(2):1–11. https://doi.org/10.1007/s10661-021-08869-7

    Article  CAS  Google Scholar 

  33. Wei X, Yu M, Li C, Gong X, Qin F, Wang Z (2018) Magnetic nanoparticles coated with a molecularly imprinted polymer doped with manganese-doped ZnS quantum dots for the determination of 2, 4, 6-trichlorophenol. Microchim Acta 185(4):1–6. https://doi.org/10.1007/s00604-018-2742-5

    Article  CAS  Google Scholar 

  34. Liu Y, Chen P, Zheng S, Xing Y, Huang C (2019) Novel fluorescent sensor using molecularly imprinted silica microsphere-coated CdSe@ CdS quantum dots and its application in the detection of 2, 4, 6-trichlorophenol from environmental water samples. Luminescence 34(7):680–688. https://doi.org/10.1002/bio.3653

    Article  CAS  PubMed  Google Scholar 

  35. Murphy M, Theyagarajan K, Thenmozhi K, Senthilkumar S (2021) Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix. Colloids Surf, B 199:111540. https://doi.org/10.1016/j.colsurfb.2020.111540

    Article  CAS  Google Scholar 

  36. Kogularasu S, Sriram B, Wang S-F, Sheu J-K (2022) Sea-Urchin-Like Bi2S3 Microstructures Decorated with Graphitic Carbon Nitride Nanosheets for Use in Food Preservation. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.1c04055

    Article  Google Scholar 

  37. Li M, Yang W, Li J, Feng M, Li W, Li H, Yu Y (2018) Porous layered stacked MnCo2O4 cubes with enhanced electrochemical capacitive performance. Nanoscale 10(5):2218–2225. https://doi.org/10.1039/C7NR08239H

    Article  CAS  PubMed  Google Scholar 

  38. Tholkappiyan R, Naveen AN, Sumithra S, Vishista K (2015) Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 50(17):5833–5843. https://doi.org/10.1007/s10853-015-9132-8

    Article  CAS  Google Scholar 

  39. Zhang P, Liu J, Wu J, Wang W, Zhou C, Guo S, Li S, Yang Y, Chen L (2020) Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Mater Today Energy 17:100451. https://doi.org/10.1016/j.mtener.2020.100451

    Article  Google Scholar 

  40. Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R (2015) High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J Electroanal Chem 756:94–100. https://doi.org/10.1016/j.jelechem.2015.08.019

    Article  CAS  Google Scholar 

  41. Tseng T-W, Chen T-W, Chen S-M, Kokulnathan T, Ahmed F, Hasan P, Bilgrami AL, Kumar S (2021) Construction of strontium phosphate/graphitic-carbon nitride: A flexible and disposable strip for acetaminophen detection. J Hazard Mater 410:124542. https://doi.org/10.1016/j.jhazmat.2020.124542

    Article  CAS  PubMed  Google Scholar 

  42. Hsu C-P, Lee K-M, Huang JT-W, Lin C-Y, Lee C-H, Wang L-P, Tsai S-Y, Ho K-CJEA (2008) EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. 53(25):7514–7522. https://doi.org/10.1016/j.electacta.2008.01.104

  43. Hwa K-Y, Ganguly A, Santhan A, Sharma TSKJC (2021) Vanadium selenide decorated reduced graphene oxide nanocomposite: a co-active catalyst for the detection of 2, 4, 6–trichlorophenol. 282:130874. https://doi.org/10.1016/j.chemosphere.2021.130874

  44. Buledi JA, Solangi AR, Memon SQ, Haider SI, Ameen S, Khand NH, Bhatti A, Qambrani NJL (2021) Nonenzymatic Electrochemical Detection of 2, 4, 6-Trichlorophenol Using CuO/Nafion/GCE: A Practical Sensor for Environmental Toxicants. 37 (10):3214–3222. https://doi.org/10.1021/acs.langmuir.1c00165

  45. Díaz‐Díaz G, Blanco‐López MC, Lobo‐Castañón MJ, Miranda‐Ordieres AJ, Tuñón‐Blanco PJE (2011) Preparation and characterization of a molecularly imprinted microgel for electrochemical sensing of 2, 4, 6‐trichlorophenol. 23 (1):201–208. https://doi.org/10.1002/elan.201000481

  46. Zhu X, Zhang K, Wang D, Zhang D, Yuan X, Qu JJJoEC (2018) Electrochemical sensor based on hydroxylated carbon nanotubes/platinum nanoparticles/rhodamine B composite for simultaneous determination of 2, 4, 6-trichlorophenol and 4-chlorophenol. 810:199–206. https://doi.org/10.1016/j.jelechem.2018.01.017

  47. Wei X, Yu M, Li C, Gong X, Qin F, Wang ZJMA (2018) Magnetic nanoparticles coated with a molecularly imprinted polymer doped with manganese-doped ZnS quantum dots for the determination of 2, 4, 6-trichlorophenol. 185 (4):1–6. https://doi.org/10.1007/s00604-018-2772-z

  48. Liu J, Niu J, Yin L, Jiang FJA (2011) In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring. 136 (22):4802-4808. https://doi.org/10.1039/C1AN15649G

  49. Díaz‐Díaz G, Blanco‐López MC, Lobo‐Castañón MJ, Miranda‐Ordieres AJ, Tuñón‐Blanco PJEAIJDtF, Electroanalysis PAo (2009) Chloroperoxidase Modified Electrode for Amperometric Determination of 2, 4, 6‐Trichlorophenol. 21 (12):1348–1353. https://doi.org/10.1002/elan.200804545

  50. Liu Y, Chen P, Zheng S, Xing Y, Huang CJL (2019) Novel fluorescent sensor using molecularly imprinted silica microsphere‐coated CdSe@ CdS quantum dots and its application in the detection of 2, 4, 6‐trichlorophenol from environmental water samples. 34 (7):680–688. https://doi.org/10.1002/bio.3653

  51. Arumugam B, Nagarajan V, Perumal KN, Annaraj J, Ramaraj SKJMJ (2022) Fabrication of wurtzite ZnO embedded functionalized carbon black as sustainable electrocatalyst for detecting endocrine disruptor Trichlorophenol. 175:107202. https://doi.org/10.1016/j.microc.2022.107202

  52. Wang L, Liu Y, Yang R, Li J, Qu LJMJ (2020) AgNPs–PDA–GR nanocomposites-based molecularly imprinted electrochemical sensor for highly recognition of 2, 4, 6-trichlorophenol. 159:105567. https://doi.org/10.1016/j.microc.2020.105567

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology (MOST-108-2221-E-027-063) through their financial encouragement.

Author information

Authors and Affiliations

Authors

Contributions

Subramaniyan Vinoth contributed to writing—original draft, data curation, methodology, formal analysis, conceptualization. Sea-Fue Wang contributed to validation, formal analysis, resources, supervision, funding acquisition.

Corresponding author

Correspondence to Sea-Fue Wang.

Ethics declarations

Competing Interest

The authors declare that they have no conflicts of interest to this research work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3790 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoth, S., Wang, SF. Modification of glassy carbon electrode with manganese cobalt oxide-cubic like structures incorporated graphitic carbon nitride sheets for the voltammetric determination of 2,4,6 -trichlorophenol. Microchim Acta 189, 205 (2022). https://doi.org/10.1007/s00604-022-05305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05305-6

Keywords

Navigation