Skip to main content
Log in

3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A 3D printed, automated, pressure-driven injection microfluidic system for microchip electrophoresis (µCE) of preterm birth (PTB)-related peptides and proteins has been developed. Functional microvalves were formed, either with a membrane thickness of 5 µm and a layer exposure time of 450 ms or with a membrane thickness of 10 µm and layer exposure times of 300–350 ms. These valves allowed for control of fluid flow in device microchannels during sample injection for µCE separation. Device design and µCE conditions using fluorescently labeled amino acids were optimized. A sample injection time of 0.5 s and a separation voltage of 450 V (460 V/cm) yielded the best separation efficiency and resolution. We demonstrated the first µCE separation with pressure-driven injection in a 3D printed microfluidic device using fluorescently labeled PTB biomarkers and 532 nm laser excitation. Detection limits for two PTB biomarkers, peptide 1 and peptide 2, for an injection time of 1.5 s were 400 pM and 15 nM, respectively, and the linear detection range for peptide 2 was 50–400 nM. This 3D printed microfluidic system holds promise for future integration of on-chip sample preparation processes with µCE, offering promising possibilities for PTB risk assessment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT (2020) Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem 92(1):150–168

    Article  CAS  Google Scholar 

  2. Urbanska M, Muñoz HE, Shaw BJ, Otto O, Manalis SR, Di Carlo D, Guck J (2020) A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods 17(6):587–593

    Article  CAS  Google Scholar 

  3. Wang C, Wang C, Qiu J, Gao J, Liu H, Zhang Y, Han L (2021) Ultrasensitive, high-throughput, and rapid simultaneous detection of SARS-CoV-2 antigens and IgG/IgM antibodies within 10 min through an immunoassay biochip. Microchim Acta 188(8):262

    Article  CAS  Google Scholar 

  4. Dai B, Yin C, Wu J, Li W, Zheng L, Lin F, Zhuang S (2021) A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. Lab Chip 21(1):143–153

    Article  CAS  Google Scholar 

  5. Mora MF, Kehl F, Tavares da Costa E, Bramall N, Willis PA (2020) Fully automated microchip electrophoresis analyzer for potential life detection missions. Anal Chem 92(19):12959–12966

    Article  CAS  Google Scholar 

  6. Castiaux AD, Selemani MA, Ward MA, Martin RS (2021) Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis. Anal Meth 13(42):5017–5024

    Article  CAS  Google Scholar 

  7. Sahore V, Sonker M, Nielsen AV, Knob R, Kumar S, Woolley AT (2018) Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis. Anal Bioanal Chem 410(3):933–941

    Article  CAS  Google Scholar 

  8. Li F, Guijt RM, Breadmore MC (2016) Nanoporous membranes for microfluidic concentration prior to electrophoretic separation of proteins in urine. Anal Chem 88(16):8257–8263

    Article  CAS  Google Scholar 

  9. Mitchell KR, Esene JE, Woolley AT (2022) Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem 414(1):167–180

    Article  CAS  Google Scholar 

  10. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro-and nanoscale patterning. Nat Protoc 5(3):491

    Article  CAS  Google Scholar 

  11. Kim BJ, Meng E (2015) Review of polymer MEMS micromachining. J Micromech Microengin 26(1):013001

    Article  Google Scholar 

  12. Walsh DI III, Kong DS, Murthy SK, Carr PA (2017) Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol 35(5):383–392

    Article  CAS  Google Scholar 

  13. Morbioli GG, Speller NC, Stockton AM (2020) A practical guide to rapid-prototyping of PDMS-based microfluidic devices: a tutorial. Anal Chim Acta 1135:150–174

    Article  CAS  Google Scholar 

  14. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT (2020) 3D printed microfluidics. Annu Rev Anal Chem 13:45–65

    Article  Google Scholar 

  15. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16(11):1993–2013

    Article  CAS  Google Scholar 

  16. Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann J, Segal E (2021) 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection. Microchim Acta 188(3):67

    Article  CAS  Google Scholar 

  17. Balavandy SK, Li F, Macdonald NP, Maya F, Townsend AT, Frederick K, Breadmore MC (2021) Scalable 3D printing method for the manufacture of single-material fluidic devices with integrated filter for point of collection colourimetric analysis. Anal Chim Acta 1151:238101

    Article  Google Scholar 

  18. Chen C, Wang Y, Lockwood SY, Spence DM (2014) 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 139(13):3219–3226

    Article  CAS  Google Scholar 

  19. Munshi AS, Chen C, Townsend AD, Martin RS (2018) Use of 3D printing and modular microfluidics to integrate cell culture, injections and electrochemical analysis. Anal Meth 10(27):3364–3374

    Article  CAS  Google Scholar 

  20. Singh M, Tong Y, Webster K, Cesewski E, Haring AP, Laheri S, Johnson BN (2017) 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs. Lab Chip 17(15):2561–2571

    Article  CAS  Google Scholar 

  21. Gowers SA, Curto VF, Seneci CA, Wang C, Anastasova S, Vadgama P, Boutelle MG (2015) 3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate. Anal Chem 87(15):7763–7770

    Article  CAS  Google Scholar 

  22. Quero RF, da Silveira GD, da Silva JAF, de Jesus DP (2021) Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Lab Chip 21(19):3715–3729

    Article  CAS  Google Scholar 

  23. Castiaux AD, Pinger CW, Hayter EA, Bunn ME, Martin RS, Spence DM (2019) PolyJet 3D-printed enclosed microfluidic channels without photocurable supports. Anal Chem 91(10):6910–6917

    Article  CAS  Google Scholar 

  24. Gong H, Woolley AT, Nordin GP (2016) High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16(13):2450–2458

    Article  CAS  Google Scholar 

  25. Gong H, Bickham BP, Woolley AT, Nordin GP (2017) Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 17(17):2899–2909

    Article  CAS  Google Scholar 

  26. Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, Nordin GP (2021) Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nature Commun 12(1):5509

    Article  CAS  Google Scholar 

  27. Gong H, Woolley AT, Nordin GP (2018) 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab Chip 18(4):639–647

    Article  CAS  Google Scholar 

  28. Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Caraci F (2020) Microfluidics as a novel tool for biological and toxicological assays in drug discovery processes: focus on microchip electrophoresis. Micromachines 11(6):593

    Article  Google Scholar 

  29. Chotteau V (2021) Knowing more from less: miniaturization of ligand-binding assays and electrophoresis as new paradigms for at-line monitoring and control of mammalian cell bioprocesses. Curr Opin Biotechnol 71:55–64

    PubMed  Google Scholar 

  30. Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64(17):1926–1932

    Article  CAS  Google Scholar 

  31. Drevinskas T, Maruška A, Girdauskas V, Dūda G, Gorbatsova J, Kaljurand M (2020) Complete capillary electrophoresis process on a drone: towards a flying micro-lab. Anal Meth 12(41):4977–4986

    Article  CAS  Google Scholar 

  32. Mecker LC, Martin RS (2008) Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection. Anal Chem 80(23):9257–9264

    Article  CAS  Google Scholar 

  33. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, Black RE (2016) Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388(10063):3027–3035

    Article  Google Scholar 

  34. Esplin MS, Merrell K, Goldenberg R, Lai Y, Iams JD, Mercer B, Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network (2011) Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am J Obstet Gynecol 204(5) 391-e1

  35. Graves SW, Esplin MS (2011) 80: Validation of predictive preterm birth biomarkers obtained by maternal serum proteomics. Am J Obstet Gynecol 204(1):S46

    Article  Google Scholar 

  36. Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Baggiani C (2018) Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors 9(1):2

    Article  Google Scholar 

  37. Hosseini S, Vázquez-Villegas P, Rito-Palomares M, Martinez-Chapa SO (2018) Advantages, disadvantages and modifications of conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA) (pp. 67–115). Springer Singapore.

  38. Beauchamp MJ, Nielsen AV, Gong H, Nordin GP, Woolley AT (2019) 3D printed microfluidic devices for microchip electrophoresis of preterm birth biomarkers. Anal Chem 91(11):7418–7425

    Article  CAS  Google Scholar 

  39. Nielsen AV, Nielsen JB, Sonker M, Knob R, Sahore V, Woolley AT (2018) Microchip electrophoresis separation of a panel of preterm birth biomarkers. Electrophoresis 39(18):2300–2307

    Article  CAS  Google Scholar 

  40. Almughamsi HM, Howell MK, Parry SR, Esene JE, Nielsen JB, Nordin GP, Woolley AT (2022) Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices. Analyst 147(4):734–743

    Article  CAS  Google Scholar 

  41. Bickham AV, Pang C, George BQ, Topham DJ, Nielsen JB, Nordin GP, Woolley AT (2020) 3D printed microfluidic devices for solid-phase extraction and on-chip fluorescent labeling of preterm birth risk biomarkers. Anal Chem 92(18):12322–12329

    Article  CAS  Google Scholar 

  42. Sonker M, Parker EK, Nielsen AV, Sahore V, Woolley AT (2018) Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers. Analyst 143(1):224–231

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the National Institutes of Health (R01 EB027096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam T. Woolley.

Ethics declarations

Conflict of interest

A.V.B., G.P.N., and A.T.W. all own shares in Acrea 3D, a company that is commercializing 3D printing of microfluidics.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

(MP4 2.78 MB)

(MP4 3.70 MB)

Supplementary file3

(PDF 302 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esene, J.E., Boaks, M., Bickham, A.V. et al. 3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers. Microchim Acta 189, 204 (2022). https://doi.org/10.1007/s00604-022-05303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05303-8

Keywords

Navigation