Skip to main content

Advertisement

Log in

Colorimetric determination of dopamine by exploiting the enhanced oxidase mimicking activity of hierarchical NiCo2S4-rGO composites

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite consisting of NiCo2S4 and reduced graphene oxide (rGO) was prepared via a hydrothermal process. Compared to individual NiCo2S4 nanomaterials or reduced graphene oxide, the composite exhibits enhanced oxidase-like activity. It is found that dopamine (DA) inhibits the ability of NiCo2S4-rGO to oxidize the substrate 3,3′,5′,5′-tetramethylbenzidine (TMB) to form blue colored ox-TMB. Based on these findings, a colorimetric method for determination of DA was worked out. The absorption, best measured at 652 nm, increases linearly in the 0.5–100 μM DA concentration range, and the limit of detection is 0.42 μM. This method was successfully applied to the detection of DA in spiked human serum samples.

A hierarchical NiCo2S4-rGO composite was prepared through two-step hydrothermal process. It exhibits enhanced oxidase-like activity which, however, is inhibited by dopamine (DA). Hence, less blue colored ox-TMB is formed by oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chiu C, Moss CF (2007) The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. J Acoust Soc Am 121(4):2227–2235

    Article  Google Scholar 

  2. Leaf-nosed bat, in: Encyclopædia Britannica, Encyclopædia Britannica Online, 2009

  3. Castro SL, Zigmond MJ (2001) Stress-induced increase in extracellular dopamine in striatum: role of glutamatergic action via N-methyl-D-aspartate receptors in substantia nigra. Brain Res 901(1–2):47–54

    Article  CAS  Google Scholar 

  4. Vonk J, Shackelford TK (2012) The Oxford handbook of comparative evolutionary psychology. In: Nathan PE (ed) Oxford library of psychology. Oxford University Press, New York, p 574

    Google Scholar 

  5. Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. Trends Anal Chem 76:15–29

    CAS  Google Scholar 

  6. Park SJ, Lee SH, Yang H, Park CS, Lee C-S, Kwon OS, Park TH, Jang J (2016) Human dopamine receptor-conjugated multidimensional conducting polymer nanofiber membrane for dopamine detection. Acs Appl Mater Inter 8(42):28897–28903

    Article  CAS  Google Scholar 

  7. Shen J, Sun C, Wu X (2017) Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Talanta 165:369–376

    Article  CAS  Google Scholar 

  8. Cheng Y, Wu J, Guo C, Li X-G, Ding B, Li Y (2017) A facile water-stable MOF-based "off-on" fluorescent switch for label-free detection of dopamine in biological fluid. J Mater Chem B 5(13):2524–2535

    Article  CAS  Google Scholar 

  9. Xu B, Su Y, Li L, Liu R, Lv Y (2017) Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sensor Actuat B-Chem 246:380–388

    Article  CAS  Google Scholar 

  10. Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G (2017) L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700

    Article  CAS  Google Scholar 

  11. Schumacher F, Chakraborty S, Kleuser B, Gulbins E, Schwerdtle T, Aschner M, Bornhorst J (2015) Highly sensitive isotope-dilution liquid-chromatography–electrospray ionization–tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans. Talanta 144:71–79

    Article  CAS  Google Scholar 

  12. Cudjoe E, Pawliszyn J (2014) Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J Chromatogr A 1341:1–7

    Article  CAS  Google Scholar 

  13. Wang H-H, Chen X-J, Li W-T, Zhou W-H, Guo X-C, Kang W-Y, Kou D-X, Zhou Z-J, Meng Y-N, Tian Q-W, Wu S-X (2018) ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 176:573–581

    Article  CAS  Google Scholar 

  14. Ping J, Wu J, Wang Y, Ying Y (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron 34(1):70–76

    Article  CAS  Google Scholar 

  15. Mashhadizadeh MH, Yousefi T, Nozad Golikand A (2012) A nickel hexacyanoferrate and poly(1-naphthol) hybrid film modified electrode used in the selective electroanalysis of dopamine. Electrochim Acta 59:321–328

    Article  CAS  Google Scholar 

  16. Li Y, Gu Y, Zheng B, Luo L, Li C, Yan X, Zhang T, Lu N, Zhang Z (2017) A novel electrochemical biomimetic sensor based on poly(cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta 162:80–89

    Article  Google Scholar 

  17. Zhang L, Qv S, Wang Z, Cheng J (2003) Determination of dopamine in single rat pheochromocytoma cell by capillary electrophoresis with amperometric detection. Electrochim Acta 792(2):381–385

    CAS  Google Scholar 

  18. Wang X-X, Wu Q, Shan Z, Huang Q-M (2011) BSA-stabilized au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 26(8):3614–3619

    Article  CAS  Google Scholar 

  19. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635

    Article  CAS  Google Scholar 

  20. Chen Q, Liang C, Zhang X, Huang Y (2018) High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta 182:476–483

    Article  CAS  Google Scholar 

  21. Hammes-Schiffer S, Benkovic SJ (2006) Relating protein motion to catalysis. Annu Rev Biochem 75(1):519–541

    Article  CAS  Google Scholar 

  22. Xing M, Wang J (2016) Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for co(II) removal from aqueous solution. J Colloid Interf Sci 474:119–128

    Article  CAS  Google Scholar 

  23. Zhu Y, Yang Z, Chi M, Li M, Wang C, Lu X (2018) Synthesis of hierarchical Co3O4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta 181:431–439

    Article  CAS  Google Scholar 

  24. Yang Z, Ma F, Zhu Y, Chen S, Wang C, Lu X (2017) A facile synthesis of CuFe2O4/Cu9S8/PPy ternary nanotubes as peroxidase mimics for the sensitive colorimetric detection of H2O2 and dopamine. Dalton T 46(34):11171–11179

    Article  CAS  Google Scholar 

  25. Dutta S, Ray C, Mallick S, Sarkar S, Sahoo R, Negishi Y, Pal T (2015) A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C 119(41):23790–23800

    Article  CAS  Google Scholar 

  26. Yang Z, Zhu Y, Chi M, Wang C, Wei Y, Lu X (2018) Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine. J Colloid Interf Sci 511:383–391

    Article  CAS  Google Scholar 

  27. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  28. Qian J, Yang X, Yang Z, Zhu G, Mao H, Wang K (2015) Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing. J Mater Chem B 3(8):1624–1632

    Article  CAS  Google Scholar 

  29. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342

    Article  CAS  Google Scholar 

  30. He W, Wu X, Liu J, Hu X, Zhang K, Hou S, Zhou W, Xie S (2010) Design of AgM bimetallic alloy nanostructures (M = au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994

    Article  CAS  Google Scholar 

  31. Juan Y, Chang Y, Xiaoming F, Changtai Z, Jieshan Q (2015) Ultrafast self-assembly of graphene oxide-induced monolithic NiCo–carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv Funct Mater 25(14):2109–2116

    Article  Google Scholar 

  32. Yang J, Duan X, Guo W, Li D, Zhang H, Zheng W (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 5:74–81

    Article  CAS  Google Scholar 

  33. Yanzhou J, Yan G, Guangdi N, Maoqiang C, Zezhou Y, Ce W, Yen W, Xiaofeng L (2017) Synthesis of rGO/Cu8S5/PPy composite nanosheets with enhanced peroxidase-like activity for sensitive colorimetric detection of H2O2 and phenol. Part Part Syst Charact 34(3):1600233

  34. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4):1139–1147

    Article  CAS  Google Scholar 

  35. Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X (2015) Mechanisms of oxidase and superoxide Dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137(50):15882–15891

    Article  CAS  Google Scholar 

  36. Tao Y, Ju E, Ren J, Qu X (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27(6):1097–1104

    Article  CAS  Google Scholar 

  37. Teo PS, Rameshkumar P, Pandikumar A, Jiang Z-T, Altarawneh M, Huang NM (2017) Colorimetric and visual dopamine assay based on the use of gold nanorods. Microchim Acta 184(10):4125–4132

    Article  CAS  Google Scholar 

  38. Leng Y, Xie K, Ye L, Li G, Lu Z, He J (2015) Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum. Talanta 139:89–95

    Article  CAS  Google Scholar 

  39. Chen X, Liu Q, Liu M, Zhang X, Lin S, Chen Y, Zhuang J, Yang D-P (2018) Protein-templated Fe2O3 microspheres for highly sensitive amperometric detection of dopamine. Microchim Acta 185(7):340

  40. Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126

    Article  CAS  Google Scholar 

  41. Wang B, M-m C, H-q Z, Wen W, Zhang X-h, S-f W (2017) A simple and sensitive fluorometric dopamine assay based on silica-coated CdTe quantum dots. Microchim Acta 184(9):3189–3196

    Article  CAS  Google Scholar 

  42. Liu X, Zhang W, Huang L, Hu N, Liu W, Liu Y, Li S, Yang C, Suo Y, Wang J (2018) Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim Acta 185(4):234

    Article  Google Scholar 

  43. Xue Q, Cao X, Zhang C, Xian Y (2018) Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Microchim Acta 185(4):231

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (21305097) and the 2016 undergraduate innovation training program of Sichuan Agricultural University (04054674).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanbing Rao or Xianxiang Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

The authors wish it to be known that, in their opinions, Yanying Wang, Li Yang and Yaqin Liu should be regarded as joint First Authors.

Electronic supplementary material

ESM 1

(DOC 7182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, L., Liu, Y. et al. Colorimetric determination of dopamine by exploiting the enhanced oxidase mimicking activity of hierarchical NiCo2S4-rGO composites. Microchim Acta 185, 496 (2018). https://doi.org/10.1007/s00604-018-3035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3035-8

Keywords

Navigation