Skip to main content
Log in

Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly selective electrochemical sensor was fabricated based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4 NPs). The nanocomposite has attractive properties such as high surface-to-volume ratio and good electrocatalytic activity towards the drugs acetaminophen (AC), epinephrine (EP), and melatonin (MT), best at working voltages of 0.35, 0.09 and 0.55 V (vs. Ag/AgCl), respectively. The linear ranges (and detection limits) are 6.5–135 (0.4) μmol L−1 for AC, 5–100 (0.7) μmol L−1 for EP, and 6.5–145 (3) μmol L−1 for MT.

A novel electrochemical sensor based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4) for the simultaneous detection of the acetaminophen, epinephrine and melatonin was fabricated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akinmoladun AC, Oguntunde KO, Owolabi LO, Ilesanmi OB, Ogundele JO, Olaleye MT, Akindahunsi AA (2017) Reversal of acetaminophen-generated oxidative stress and concomitant hepatotoxicity by a phytopharmaceutical product. Food Sci Human Wellness 6(1):20–27

    Article  Google Scholar 

  2. Burgot G, Auffret F, Burgot J-L (1997) Determination of acetaminophen by thermometric titrimetry. Anal Chim Acta 343(1–2):125–128

    Article  CAS  Google Scholar 

  3. An JH, Lee HJ, Jung BH (2012) Quantitative analysis of acetaminophen and its six metabolites in rat plasma using liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 26(12):1596–1604

    Article  CAS  Google Scholar 

  4. Khajehsharifi H, Eskandari Z, Asadipour A (2010) Application of some chemometric methods in conventional and derivative spectrophotometric analysis of acetaminophen and ascorbic acid. Drug Test Anal 2(4):162–167

    Article  CAS  Google Scholar 

  5. Cunha RR, Chaves SC, Ribeiro MM, Torres LM, Muñoz RA, Dos Santos WT, Richter EM (2015) Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection. J Sep Sci 38(10):1657–1662

    Article  CAS  Google Scholar 

  6. Bahram M, Hoseinzadeh F, Farhadi K, Saadat M, Najafi-Moghaddam P, Afkhami A (2014) Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloids Surf A Physicochem Eng Asp 441:517–524

    Article  CAS  Google Scholar 

  7. Ruiyi L, Haiyan Z, Zaijun L, Junkang L (2018) Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Microchim Acta 185(2):145

    Article  Google Scholar 

  8. Kemp SF, Lockey RF, Simons FER (2008) Epinephrine: the drug of choice for anaphylaxis--a statement of the world allergy organization. World Allergy Organ J 1(2):S18

    PubMed  PubMed Central  Google Scholar 

  9. Neema C, Kapur S (2013) Epinephrine toxicity: an avoidable fatal complication due to iatrogenic overdose. Sri Lankan Journal of Anaesthesiology 21(2):72

    Article  Google Scholar 

  10. Zhao Y, Zhao S, Huang J, Ye F (2011) Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85(5):2650–2654

    Article  CAS  Google Scholar 

  11. Qiu H, Luo C, Sun M, Lu F, Fan L, Li X (2012) A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers. Carbon 50(11):4052–4060

    Article  CAS  Google Scholar 

  12. Zhao Y-y, Geng C-g, Bai J, Liu L-y, Su F (2010) Simultaneous determination of Catecholamines neurotransmitters in blood plasma by micellar enhanced synchronous scanning-dual wavelength Fluorimetry. J Hebei Univ (Nat Sci) 3:012

    Google Scholar 

  13. Bulatov AV, Petrova AV, Vishnikin AB, Moskvin AL, Moskvin LN (2012) Stepwise injection spectrophotometric determination of epinephrine. Talanta 96:62–67

    Article  CAS  Google Scholar 

  14. Emran MY, Khalifa H, Gomaa H, Shenashen MA, Akhtar N, Mekawy M, Faheem A, El-Safty SA (2017) Hierarchical CN doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim Acta 184(11):4553–4562

    Article  CAS  Google Scholar 

  15. Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP (2010) Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther 27(11):796–813

    Article  CAS  Google Scholar 

  16. Yin B, Li T, Li Z, Dang T, He P (2016) Determination of melatonin and its metabolites in biological fluids and eggs using high-performance liquid chromatography with fluorescence and quadrupole-orbitrap high-resolution mass spectrometry. Food Anal Methods 9(5):1142–1149

    Article  Google Scholar 

  17. Bard AJ, Faulkner LR (2002) Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russ J Electrochem 38(12):1364–1365. https://doi.org/10.1023/a:1021637209564

  18. Roushani M, Shahdost-fard F (2016) Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater Sci Eng C 68:128–135

    Article  CAS  Google Scholar 

  19. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  20. Yao C, Zeng Q, Goya G, Torres T, Liu J, Wu H, Ge M, Zeng Y, Wang Y, Jiang J (2007) ZnFe2O4 nanocrystals: synthesis and magnetic properties. J Phys Chem C 111(33):12274–12278

    Article  CAS  Google Scholar 

  21. Guo P, Cui L, Wang Y, Lv M, Wang B, Zhao X (2013) Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. Langmuir 29(28):8997–9003

    Article  CAS  Google Scholar 

  22. Zhou X, Li X, Sun H, Sun P, Liang X, Liu F, Hu X, Lu G (2015) Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl Mater Interfaces 7(28):15414–15421

    Article  CAS  Google Scholar 

  23. Hema E, Manikandan A, Gayathri M, Durka M, Antony SA, Venkatraman B (2016) The role of Mn2+−doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J Nanosci Nanotechnol 16(6):5929–5943

    Article  CAS  Google Scholar 

  24. Montha W, Maneeprakorn W, Buatong N, Tang I-M, Pon-On W (2016) Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn) Fe2O4 nanoparticles: biological activity and pH-responsive drug release. Mater Sci Eng C 59:235–240

    Article  CAS  Google Scholar 

  25. Kombaiah K, Vijaya JJ, Kennedy LJ, Bououdina M (2016) Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties. Ceram Int 42(2):2741–2749

    Article  CAS  Google Scholar 

  26. Fan G, Gu Z, Yang L, Li F (2009) Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chem Eng J 155(1–2):534–541

    Article  CAS  Google Scholar 

  27. Habibi B, Jahanbakhshi M, Pournaghi-Azar MH (2011) Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon–ceramic electrode. Anal Biochem 411(2):167–175

    Article  CAS  Google Scholar 

  28. Wu X, Huang F, Duan J, Chen G (2005) Electrochemiluminescent behavior of melatonin and its important derivatives in the presence of Ru (bpy) 32+. Talanta 65(5):1279–1285

    Article  CAS  Google Scholar 

  29. Tezerjani MD, Benvidi A, Firouzabadi AD, Mazloum-Ardakani M, Akbari A (2017) Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: simultaneous determination of epinephrine, acetaminophen and dopamine. Measurement 101:183–189

    Article  Google Scholar 

  30. Mazloum-Ardakani M, Sheikh-Mohseni MA, Mirjalili B-F, Zamani L (2012) Simultaneous determination of captopril, acetaminophen and tryptophan at a modified electrode based on carbon nanotubes. J Electroanal Chem 686:12–18

    Article  CAS  Google Scholar 

  31. Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121

    Article  CAS  Google Scholar 

  32. Thomas T, Mascarenhas RJ, Martis P, Mekhalif Z, Swamy BK (2013) Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid. Mater Sci Eng C 33(6):3294–3302

    Article  CAS  Google Scholar 

  33. Kaur B, Srivastava R (2015) Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline–zeolite organic–inorganic hybrid materials. Sensors Actuators B Chem 211:476–488

    Article  CAS  Google Scholar 

  34. Jeevagan AJ, John SA (2012) Electrochemical determination of L-methionine using the electropolymerized film of non-peripheral amine substituted Cu (II) phthalocyanine on glassy carbon electrode. Bioelectrochemistry 85:50–55

    Article  CAS  Google Scholar 

  35. Tajik S, Taher MA, Beitollahi H, Hosseinzadeh R, Ranjbar M (2016) Preparation, characterization and electrochemical application of ZnS/ZnAl2S4 nanocomposite for voltammetric determination of methionine and tryptophan using modified carbon paste electrode. Electroanalysis 28(4):656–662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Isfahan Payame Noor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Tavakkoli.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Highlights

• For the first time simultaneous measurement of acetaminophen, epinephrine, and melatonin was successfully achieved.

• A sensor was fabricated by a modified carbon past electrode with zinc ferrite nanoparticles as an efficient nanocomposite.

• The prepared nanocomposite has some properties such as high surface to volume ratio and good electrocatalytic effect.

• Minimum substrates and materials were handled for a possible point of care assays.

Electronic supplementary material

ESM 1

(DOCX 1856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakkoli, N., Soltani, N., Shahdost-fard, F. et al. Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles. Microchim Acta 185, 479 (2018). https://doi.org/10.1007/s00604-018-3009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3009-x

Keywords

Navigation