Skip to main content
Log in

Single cell immunodetection of Escherichia coli O157:H7 on an indium-tin-oxide electrode by using an electrochemical label with an organic-inorganic nanostructure

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rapid and highly sensitive method is described for the detection of enterohemorrhagic Escherichia coli O157:H7. An organic-inorganic nanostructure in which numerous gold nanoparticles (AuNPs) are enclosed with polyaniline (PANI) was utilized as an electrochemical label. The nanostructure showed (a) strong light scattering intensity due to the coupling effect of the surface plasmon resonance based on the presence of AuNPs, and (b) high electrochemical response due to the redox activity of PANI. To achieve selectivity, antibody against E. coli O157:H7 was immobilized on the surface of the nanostructure. The method exploits the combination of strong adsorption of bacterial cells onto the indium-tin-oxide (ITO) glass electrode without any special processing and specific binding of the nanostructured label to E. coli O157:H7. This enables the electrochemical detection of a single cell on the ITO electrode. The electrochemical response to E. coli O157:H7 was 30-fold higher than that to other types of bacteria. This procedure can be applied to the determination of E. coli O157:H7 even in the presence of other bacteria.

Schematic of a voltammetric immunoassay for Escherichia coli O157:H7 by using a nanocomposite consisting of gold nanoparticles and polyaniline on an ITO electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palková Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5:470–476. https://doi.org/10.1038/sj.embor.7400145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jone KE, Patel N, Levy M, Storeygard A, Balk D, Gittleman J, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

    Article  CAS  Google Scholar 

  4. Shiigi H, Kinoshita T, Fukuda M, Dung LQ, Nishino T, Nagaoka T (2015) Nanoantennas as biomarkers for bacterial detection. Anal Chem 87:4042–4046. https://doi.org/10.1021/acs.analchem.5b00415

    Article  CAS  PubMed  Google Scholar 

  5. Wong SY, Paschos A, Gupta RS, Schellhorn HE (2014) Insertion/deletion-based approach for the detection of Escherichia coli O157:H7 in freshwater environments. Environ Sci Technol 48:11462–11470. https://doi.org/10.1021/es502794h

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee T, Sulthana S, Shelby T, Heckert B, Jewell J, Woody K, Karimnia V, McAfee J, Santra S (2016) Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of Escherichia coli O157:H7. ACS Infect Dis 2:667–673. https://doi.org/10.1021/acsinfecdis.6b00108

    Article  CAS  PubMed  Google Scholar 

  7. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107. https://doi.org/10.1021/ac404205c

    Article  CAS  PubMed  Google Scholar 

  8. Jin S, Heo Y, Lin L, Deering AJ, Chiu GTC, Allebach JP, Stanciu LA (2017) Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157:H7. Microchim Acta 184:4879–4886. https://doi.org/10.1007/s00604-017-2524-5

    Article  CAS  Google Scholar 

  9. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 86:1525–1533. https://doi.org/10.1021/ac402935p

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, Li S, Shao N, Dong P, Xiao R, Wang S (2016) Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8:19958–19967. https://doi.org/10.1021/acsami.6b07528

    Article  CAS  PubMed  Google Scholar 

  11. Shan X, Yamauchi T, Yamamoto Y, Niyomdecha S, Ishiki K, Le DQ, Shiigi H, Nagaoka T (2017) Spontaneous and specific binding of enterohemorrhagic Escherichia coli to overoxidized polypyrrole-coated microspheres. Chem Commun 53:3890–3893. https://doi.org/10.1039/c7cc00244k

    Article  CAS  Google Scholar 

  12. Chen S, Chen X, Zhang L, Gao J, Ma Q (2017) Electrochemiluminescence detection of Escherichia coli O157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl Mater Interfaces 9:5430–5436. https://doi.org/10.1021/acsami.6b12455

    Article  CAS  PubMed  Google Scholar 

  13. Kinoshita T, Nguyen DQ, Le DQ, Ishiki K, Shiigi H, Nagaoka T (2017) Shape memory characteristics of O157-antigenic cavities generated on nanocomposites consisting of copolymer-encapsulated gold nanoparticles. Anal Chem 89:4680–4684. https://doi.org/10.1021/acs.analchem.7b00308

    Article  CAS  PubMed  Google Scholar 

  14. Disney MD, Zheng J, Swager TM, Seeberger PH (2004) Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 126:133433–113346. https://doi.org/10.1021/ja047936i

    Article  CAS  Google Scholar 

  15. Guilini C, Baehr C, Schaeffer E, Gizzi P, Rufi F, Haiech J, Weiss E, Bonnet D, Galzi J (2015) New fluorescein precursors for live Bacteria detection. Anal Chem 87:8858–8866. https://doi.org/10.1021/acs.analchem.5b02100

    Article  CAS  PubMed  Google Scholar 

  16. Shahrokhian S, Ranjbar S (2018) Aptamer immobilization on amino-functionalized metal-organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7. Analyst 143:3191–3201. https://doi.org/10.1039/c8an00725j

    Article  CAS  PubMed  Google Scholar 

  17. Guner A, Cevik E, Senel M, Alpsoy L (2017) An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem 229:358–365. https://doi.org/10.1016/j.foodchem.2017.02.083

    Article  CAS  PubMed  Google Scholar 

  18. Shoaie N, Forouzandeh M, Omidfar K (2018) Voltametric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Microchim Acta 185:217. https://doi.org/10.1007/s00604-018-2749-y

    Article  CAS  Google Scholar 

  19. Le DQ, Morishita A, Tokonami S, Nishino T, Shiigi H, Miyake M, Nagaoka T (2015) Voltammetric detection and profiling of isoprenoid Quinones Hydrophobically transferred from bacterial cells. Anal Chem 87:8416–8423. https://doi.org/10.1021/acs.analchem.5b01772

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Jiang Z, Ackerman JD, Yazdari M, Hou S, Nugen SR, Rotello VM (2015) Electrochemical nanoparticle–enzyme sensors for screening bacterial contamination in drinking water. Analyst 140:4991–4996. https://doi.org/10.1039/c5an00637f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. She Z, Topping K, Shamsi MH, Wang N, Chan NWC, Kraatz H (2015) Investigation of the utility of complementary electrochemical detection techniques to examine the in vitro affinity of bacterial Flagellins for a toll-like receptor 5 biosensor. Anal Chem 87:4218–4224. https://doi.org/10.1021/ac5042439

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Du C, Ni D, Ran Q, Liu F, Jiang D, Pu X (2016) A simple and sensitive electrochemical sensor for rapid detection of Clostridium tetani based on multi-walled carbon nanotubes. Anal Methods 8:8280–8287. https://doi.org/10.1039/c6ay01025c

    Article  CAS  Google Scholar 

  23. Xu M, Wang R, Li Y (2016) An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst 141:5441–5449. https://doi.org/10.1039/c6an00873a

    Article  CAS  PubMed  Google Scholar 

  24. Shiigi H, Yamamoto Y, Yoshi N, Nakao H, Nagaoka T (2006) One-step preparation of positively-charged gold nanoraspberry. Chem Commun 0:4288–4290. https://doi.org/10.1039/b610085f

    Article  CAS  Google Scholar 

  25. Shiigi H, Morita R, Yamamoto Y, Tokonami S, Nakao H, Nagaoka T (2009) Self-organization of an organic–inorganic hybrid nanomushroom by a simple synthetic route at the organic/water interface. Chem Commun 0:3615–3617. https://doi.org/10.1039/b903728d

    Article  CAS  Google Scholar 

  26. Kinoshita T, Nguyen DQ, Nishino T, Nakao H, Shiigi H, Nagaoka T (2015) Fluorescence enhancement of Nanoraspberry hot-spot source composed of gold nanoparticles and aniline oligomers. Anal Sci 31:487–493. https://doi.org/10.2116/analsci.31.487

    Article  CAS  PubMed  Google Scholar 

  27. Shiigi H, Fukuda M, Tono T, Takada K, Okada T, Dung LQ, Hatsuoka Y, Kinoshita T, Takai M, Tokonami S, Nakao H, Nishino T, Yamamoto Y, Nagaoka T (2014) Construction of nanoantennas on the bacterial outer membrane. Chem Commun 50:6252–6255. https://doi.org/10.1039/c4cc01204f

    Article  CAS  Google Scholar 

  28. Morita R, Inoue R, Tokonami S, Yamamoto Y, Nakayama M, Nakao H, Shiigi H, Nagaoka T (2011) Organic-inorganic hybrid Nanoraspberry consisted of gold nanoparticle and aniline oligomer. J Electrochem Soc 158:K95–K100. https://doi.org/10.1149/1.3549166

    Article  CAS  Google Scholar 

  29. Shiigi H, Morita R, Muranaka Y, Tokonami S, Yamamoto Y, Nakao H, Nagaoka T (2012) Mass production of monodisperse gold nanoparticles in polyaniline matrix. J Electrochem Soc 159:D442–D446. https://doi.org/10.1149/2.071207jes

    Article  CAS  Google Scholar 

  30. Shiigi H, Muranaka Y, Hatsuoka Y, Yamamoto Y, Nagaoka T (2013) Electrochemical catalytic activity of organic-inorganic hybrid Nanoraspberry consisted of gold nanoparticle and aniline oligomer. J Electrochem Soc 160:H813–H817. https://doi.org/10.1149/2.058311jes

    Article  CAS  Google Scholar 

  31. Ping Z, Nauer GE, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc Faraday Trans 93:121–129. https://doi.org/10.1039/a604620g

    Article  CAS  Google Scholar 

  32. Shu J, Qiu Z, Qian Z, Lin Y, Lu M, Tang D (2016) Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter. Anal Chem 88:2958–2966. https://doi.org/10.1021/acs.analchem.6b00262

    Article  CAS  PubMed  Google Scholar 

  33. Shu J, Tang D (2017) Current advances in quantum-dots-based Photoelectrochemical immunoassays. Chem Asian J 12:2780–2789. https://doi.org/10.1002/asia.201701229

    Article  CAS  PubMed  Google Scholar 

  34. Lin Y, Zhou Q, Tang D, Niessner R, Knopp D (2017) Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 Nanosheets for dissociation of carbon dots. Anal Chem 89:5637–5645. https://doi.org/10.1021/acs.analchem.7b00942

    Article  CAS  PubMed  Google Scholar 

  35. Lin Y, Zhou Q, Tang D (2017) Dopamine-loaded liposomes for in-situ amplified Photoelectrochemical immunoassay of AFB1 to enhance photocurrent of Mn2+-doped Zn3(OH)2V2O7 Nanobelts. Anal Chem 89:11803–11810. https://doi.org/10.1021/acs.analchem.7b03451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor M. Miyake at Osaka Prefecture University and Dr. K. Seto at Osaka Prefectural Institute of Public Health for providing verotoxin-non-producing E. coli strains. This work was financially supported by the Ministry of Agriculture, Forestry, and Fisheries through a science and technology research promotion program for the agriculture, forestry, fisheries, and food industries; and the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (B) (KAKENHI 25288039, 16H04137) and Grant-in-Aid for Challenging Exploratory Research (KAKENHI 26620072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Shiigi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 2.11 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.Q., Ishiki, K. & Shiigi, H. Single cell immunodetection of Escherichia coli O157:H7 on an indium-tin-oxide electrode by using an electrochemical label with an organic-inorganic nanostructure. Microchim Acta 185, 465 (2018). https://doi.org/10.1007/s00604-018-3001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3001-5

Keywords

Navigation