Skip to main content

Advertisement

Log in

Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for enhancing the hybridization chain reaction (HCR) by using gold nanoparticles (AuNPs). This can considerably improve the sensitivity of electrochemical immunoassays as demonstrated for the carbohydrate antigen 125 (CA125), a biomarker for ovarian cancer. Compared to previous HCR based assays, the DNA acting as fuel strands were immobilized onto AuNPs, so that dendrimeric like chains were formed on the electrode after HCR. The improved signal is due to the reaction of DNA on the electrode. Specifically, the reaction of the phosphate groups of DNA with molybdate forms redox-active molybdophosphate, and this generates a strong electrochemical current. The immunosensor was prepared by sequential capturing, on the electrode, (a) antibody against CA125, (b) analyte (CA125), and (c) an aptamer against CA125 to form a sandwich structure. The primer on the aptamer sequence initiates HCR by annealing to one strand of DNA on the AuNPs and to another DNA in solution. The increased loading of DNA molecules onto the electrode increases the amount of phosphate groups and subsequently increases the electrical signal. The sensitivity of the assay is found to be significantly improved compared to assays without HCR and when using conventional HCR. The immunosensor was successfully applied to the determination of CA125 in human serum samples. The detection limit (based on an S/N ratio of 3) is 50 μU.mL−1. This indicates that this signal amplification strategy has a large potential in terms of clinical applications. It may be modified such that it also can be applied to the determination of other analytes for which proper aptamers are available.

Gold nanoparticle (AuNP) enhanced hybridization chain reaction is reported to improve the sensitivity of electrochemical immunosensor. Hybridization chain reaction is carried out by annealing of H1 DNA strand immobilized on AuNP to the sticky end primer sequence of the aptamer and H2 strand to the complementary sequence of H1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng K, Tian S, Wang Z, Shen C, Luo J, Yang M, Liu Y-N (2017) An ELISA for the determination of human IgG based on the formation of a colored iron(II) complex and photometric or visual read-out. Microchim Acta 184(8):2791–2796

    Article  CAS  Google Scholar 

  2. Tang D, Su B, Tang J, Ren J, Chen G (2010) Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Analy Chem 82(4):1527–1534

    Article  CAS  Google Scholar 

  3. Tang Z, Ma Z (2017) Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: a review. Biosens Bioelectron 98:100–112

    Article  CAS  PubMed  Google Scholar 

  4. Liu W, Ma C, Yang H, Zhang Y, Yan M, Ge S, Yu J, Song X (2014) Electrochemiluminescence immunoassay using a paper electrode incorporating porous silver and modified with mesoporous silica nanoparticles functionalized with blue-luminescent carbon dots. Microchim Acta 181(11–12):1415–1422

    Article  CAS  Google Scholar 

  5. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184(4):969–979

    Article  CAS  Google Scholar 

  6. Zhao Y, Zheng Y, Kong R, Xia L, Qu F (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Zong S, Wu L, Zhu D, Cui Y (2017) SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev 117(12):7910–7963

    Article  CAS  PubMed  Google Scholar 

  8. Kieu The Loan T, Lee NY (2017) A portable microreactor with minimal accessories for polymerase chain reaction: application to the determination of foodborne pathogens. Microchim Acta 184(11):4225–4233

    Article  CAS  Google Scholar 

  9. Kieu The Loan T, Wu W, Lee NY (2014) Bent polydimethylsiloxane-polycarbonate hybrid microdevice for on-chip flow-through polymerase chain reaction employing a single heater. Microchim Acta 181(13–14):1697–1705

    Google Scholar 

  10. Cheng X, Yu X, Chen L, Zhang H, Wu Y, Fu F (2017) Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification. Microchim Acta 184(11):4259–4267

    Article  CAS  Google Scholar 

  11. Li X, Xu X, Song J, Xue Q, Li C, Jiang W (2017) Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Biosens Bioelectron 91:631–636

    Article  CAS  PubMed  Google Scholar 

  12. Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183(1):297–304

    Article  CAS  Google Scholar 

  13. Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J (2017) Differential pulse voltammetric ochratoxin a assay based on the use of an aptamer and hybridization chain reaction. Microchim Acta 184(3):863–870

    Article  CAS  Google Scholar 

  14. Chen Y-X, Huang K-J, He L-L, Wang Y-H (2017) Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor. Biosens Bioelectron 100:274–281

    Article  CAS  PubMed  Google Scholar 

  15. Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46(14):4281–4298

    Article  CAS  PubMed  Google Scholar 

  16. Guo J, Wang J, Zhang J, Zhang W, Zhang Y (2017) Ultrasensitive non enzymatic multiple immunosensor for tumor markers detection by coupling DNA hybridization chain reaction with intercalated molecules. Biosens Bioelectron 90:159–165

    Article  CAS  PubMed  Google Scholar 

  17. Guo Q, Bian F, Liu Y, Qu X, Hu X, Sun Q (2017) Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem Commun 53(36):4954–4957

    Article  CAS  Google Scholar 

  18. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84(12):5392–5399

    Article  CAS  PubMed  Google Scholar 

  19. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89(19):10264–10269

    Article  CAS  PubMed  Google Scholar 

  20. Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89(4):2547–2552

    Article  CAS  PubMed  Google Scholar 

  21. Jiang W, Tian D, Zhang L, Guo Q, Cui Y, Yang M (2017) Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB. Microchim Acta 184(11):4375–4381

    Article  CAS  Google Scholar 

  22. Si Z, Xie B, Chen Z, Tang C, Li T, Yang M (2017) Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Microchim Acta 184(9):3215–3221

    Article  CAS  Google Scholar 

  23. Zheng Y, Wang H, Ma Z (2017) A nanocomposite containing Prussian blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125. Microchim Acta 184(11):4269–4277

    Article  CAS  Google Scholar 

  24. Babamiri B, Hallaj R, Salimi A (2018) Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)(3)(2+) and PAMAM-CdTe@CdS nanocomposite. Biosens Bioelectron 99:353–360

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M (2017) Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Microchim Acta 184(3):855–861

    Article  CAS  Google Scholar 

  26. Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225

    Article  CAS  PubMed  Google Scholar 

  27. Xie B, Zhou N, Ding R, Zhao Y, Zhang B, Li T, Yang M (2017) Dual signal amplification strategy for electrochemical detection of platelet-derived growth factor BB. Anal Methods 9(46):6569–6573

    Article  CAS  Google Scholar 

  28. Jiang W, Liu L, Zhang L, Guo Q, Cui Y, Yang M (2017) Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Microchim Acta 184(12):4757–4763

    Article  CAS  Google Scholar 

  29. Qu F, Yang M, Rasooly A (2016) Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer's related protease beta-secretase. Anal Chem 88(21):10559–10565

    Article  CAS  PubMed  Google Scholar 

  30. Feng K, Liu J, Deng L, Yu H, Yang M (2018) Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Microchim Acta 185 (1). Unsp 28

  31. Li X, Shen C, Yang M, Rasooly A (2018) Polycytosine DNA electric-current-generated Immunosensor for electrochemical detection of human epidermal growth factor Receptor2 (HER2). Anal Chem 90(7):4764–4769

    Article  CAS  PubMed  Google Scholar 

  32. Zhao L, Han H, Ma Z (2018) Improved screen-printed carbon electrode for multiplexed label-free amperometric immuniosensor: addressing its conductivity and reproducibility challenges. Biosens Bioelectron 101:304–310

    Article  CAS  PubMed  Google Scholar 

  33. Al-Ogaidi I, Aguilar ZP, Suri S, Gou H, Wu N (2013) Dual detection of cancer biomarker CA125 using absorbance and electrochemical methods. Analyst 138(19):5647–5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Torati SR, Kasturi KCSB, Lim B, Kim C (2017) Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125. Sensor Actuator B Chem 243:64–71

    Article  CAS  Google Scholar 

  35. Wu L, Sha Y, Li W, Wang S, Guo Z, Zhou J, Su X, Jiang X (2016) One-step preparation of disposable multi-functionalized g-C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sensor Actuators B Chem 226:62–68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyuan Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Yang, M. & Ding, Y. Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185, 331 (2018). https://doi.org/10.1007/s00604-018-2869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2869-4

Keywords

Navigation