Skip to main content
Log in

Hyaluronic acid-grafted three-dimensional MWCNT array as biosensing interface for chronocoulometric detection and fluorometric imaging of CD44-overexpressing cancer cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich-type electrochemical cytosensor is described for quantitative determination of CD44-overexpressing HeLa cells. Hyaluronic acid (HA) acts as a targeting molecule that was in-situ incorporated into the sensor based on the use of an indium tin oxide (ITO) electrode modified with multi-walled carbon nanotubes (MWCNTs). The 3D-MWCNT structure is shown to strongly improve the electronic properties and surface chemical reactivities. The HA-modified sensor exhibits a highly sensitive response to HeLa cells. A sandwiched hybridization protocol was then established using BIO [an N-butyl-4-(6′-aminohexyl)amino-1,8-naphthalimide probe modified with HA] as the tracing labels of the fluorescent probes for targeting CD44-positive tumor cells. The signal amplification was thereby maximized and measured by chronocoulometry. The binding of CD44-positive HeLa cells to the HA modified sensing layer causes a decrease in chronocoulometric response. The signal decreases linearly in the 2.1 × 102 to 2.1 × 107 HeLa cells·mL−1 concentration range with a detection limit of 70 cells·mL−1. Such a sandwich-type assay may be tailored as a sensitive candidate for detecting low levels of tumor cells.

Schematic of a sandwich cytosensor based on hyaluronic acid-grafted 3D-MWCNT as biosensing interface and BIO as fluorescent probe. This biosensor possessed excellent electrochemical activity, high sensitivity and selectivity, providing a dynamical tracking and detecting platform for CD44-positive tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C (2013) Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 5(1):178–183

    Article  CAS  PubMed  Google Scholar 

  2. Gui W, Zhang J, Chen X, Yu D, Ma Q (2018) N-doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Microchim Acta 185:66

    Article  CAS  Google Scholar 

  3. Wang W, Jayachandran S, Li M, Xu S, Luo X (2018) Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling. Microchim Acta 185:156

    Article  CAS  Google Scholar 

  4. Gao N, Yang W, Nie H, Gong Y, Jing J, Gao L, Zhang X (2017) Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron 96:300–307

    Article  CAS  PubMed  Google Scholar 

  5. Bourguignon LYW, Zhu H, Shao L, Chen YW (2000) CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 275:1829–1838

    Article  CAS  PubMed  Google Scholar 

  6. Platt VM, Szoka FC Jr (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5(4):474–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Datir SR, Das M, Singh RP, Jain S (2012) Hyaluronate tethered, "smart" multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23(11):2201–2213

    Article  CAS  PubMed  Google Scholar 

  8. Zhou B, Hao Y, Long D, Yang P (2018) Real-time quartz crystal microbalance cytosensor based on a signal recovery strategy for in-situ and continuous monitoring of multiple cell membrane glycoproteins. Biosens Bioelectron 111:90–96

    Article  CAS  PubMed  Google Scholar 

  9. Cho H-Y, Hossain MK, Lee J-H, Han J, Lee HJ, Kim K-J, Kim J-H, Lee K-B, Choi J-W (2018) Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging. Biosens Bioelectron 102:372–382

    Article  CAS  PubMed  Google Scholar 

  10. Coradini D, Zorzet S, Rossin R, Scarlata I, Pellizzaro C, Turrin C, Bello M, Cantoni S, Speranza A, Sava G, Mazzi U, Perbellini A (2004) Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-but. Clin Cancer Res 10(14):4822–4830

    Article  CAS  PubMed  Google Scholar 

  11. Choi KY, Min KH, Na JH, Choi K, Kim K, Park JH, Kwon IC, Jeong SY (2009) Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J Mater Chem 19(24):4102–4107

    Article  CAS  Google Scholar 

  12. Hyung W, Ko H, Park J, Lim E, Park SB, Park Y-J, Yoon HG, Suh JS, Haam S (2008) Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnol Bioeng 99(2):442–454

    Article  CAS  PubMed  Google Scholar 

  13. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  14. Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35(11):3666–3677

    Article  CAS  PubMed  Google Scholar 

  15. Tian H, Lin L, Chen J, Chen X, Park TG, Maruyama A (2011) RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J Control Release 155(1):47–53

    Article  CAS  PubMed  Google Scholar 

  16. Li F, B-c B, Na K (2010) Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug Chem 21(7):1312–1320

    Article  CAS  PubMed  Google Scholar 

  17. Veillon P, Gallois Y, Moal V, Fouchard-Hubert I, Charles I, Larcher F, Dib N, Boursier J, Oberti F, Laafi J, Guechot J, Balan V, Cales P, Lunel-Fabiani F (2011) Assessment of new hyaluronic acid assays and their impact on FibroMeter scores. Clin Chim Acta 412(3–4):347–352

    Article  CAS  PubMed  Google Scholar 

  18. Anson FC (1966) Innovations in the study of adsorbed reactants by chronocoulometry. Anal Chem 38(1):54–57

    Article  CAS  Google Scholar 

  19. Zhong S-L, Zhuang J, Yang D-P, Tang D (2017) Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor. Biosens Bioelectron 96:26–32

    Article  CAS  PubMed  Google Scholar 

  20. Yang D-P, Guo W, Cai Z, Chen Y, He X, Huang C, Zhuang J, Jia N (2018) Highly sensitive electrochemiluminescence biosensor for cholesterol detection based on AgNPs-BSA-MnO2 nanosheets with superior biocompatibility and synergistic catalytic activity. Sensors Actuators B Chem 260:642–649

    Article  CAS  Google Scholar 

  21. Dana SM, Jablonski ME, Anderson MR (1993) Quantitative determination of surface excess by the semiintegral method. Anal Chem 65(8):1120–1122

    Article  CAS  Google Scholar 

  22. Anjo DM, Corkery KK, Gonzalez E, Marantos KA, Estrada KE (1994) Diffusion coefficients of phenolic aromatics by chronocoulometry at the glassy-carbon electrode. J Chem Eng Data 39(4):813–816

    Article  CAS  Google Scholar 

  23. Rusling JF, Brooks MY (1984) Analysis of chronocoulometric data and determination of surface concentrations. Anal Chem 56(12):2147–2153

    Article  CAS  PubMed  Google Scholar 

  24. Ren R, Leng C, Zhang S (2010) Detection of DNA and indirect detection of tumor cells based on circular strand-replacement DNA polymerization on electrode. Chem Commun 46(31):5758–5760

    Article  CAS  Google Scholar 

  25. Rasheed PA, Sandhyarani N (2017) Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchim Acta 184(4):981–1000

    Article  CAS  Google Scholar 

  26. Dutta G, Kim S, Park S, Yang H (2014) Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode. Anal Chem 86(9):4589–4595

    Article  CAS  PubMed  Google Scholar 

  27. Huang S, Feng M, Li J, Liu Y, Xiao Q (2018) Voltammetric determination of attomolar levels of a sequence derived from the genom of hepatitis B virus by using molecular beacon mediated circular strand displacement and rolling circle amplification. Microchim Acta 185:206

    Article  CAS  Google Scholar 

  28. Jia T, Fu C, Huang C, Yang H, Jia N (2015) Highly sensitive naphth limide-based fluorescence polarization probe for detecting cancer cells. ACS Appl Mater Interfaces 7(18):10013–10021

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Wang T, Ye Y-X, Zhang Y-X, Yang P-H, Cai H-H, Cai J-Y (2012) Construction of an electrochemical cytosensor based on polyaniline nanofiber/gold nanoparticle interface and application to detection of cancer cells. Chin J Anal Chem 40(2):184–190

    Article  CAS  Google Scholar 

  30. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martinez F, Castillo-Leon J (2013) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138(4):1026–1031

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Ju J, Li J, Li J, Qian Q, Mao C, Shen J (2014) Preparation of electrochemical cytosensor for sensitive detection of HeLa cells based on self-assembled monolayer. Electrochim Acta 123:511–517

    Article  CAS  Google Scholar 

  32. Wang S, Wang H, Jiao J, Chen K-J, Owens GE, Kamei K-i, Sun J, Sherman DJ, Behrenbruch CP, Wu H, Tseng H-R (2009) Three- dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem 121(47):9132–9135

    Article  Google Scholar 

  33. Xu Y, Wu H, Huang C, Hao C, Wu B, Miao C, Chen S, Jia N (2015) Sensitive detection of tumor cells by a new cytosensor with 3D-MWCNTs array based on vicinal-dithiol-containing proteins (VDPs). Biosens Bioelectron 66:321–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81472001, 21373138 and 31400851), the Minjiang Scholars Program of Fujian Province, the Tongjiang Scholars Program of Quanzhou City and the Fourth Health Education Joint Development Project of Fujian Province (WKJ-2016-2-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nengqin Jia.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xu, Y., Huang, C. et al. Hyaluronic acid-grafted three-dimensional MWCNT array as biosensing interface for chronocoulometric detection and fluorometric imaging of CD44-overexpressing cancer cells. Microchim Acta 185, 338 (2018). https://doi.org/10.1007/s00604-018-2861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2861-z

Keywords

Navigation