Skip to main content

Advertisement

Log in

Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for the colorimetric determination of unamplified microRNA. It is based on the use of citrate-capped gold nanoparticles (AuNPs) and, alternatively, a microRNA-probe hybrid or a magnetically extracted microRNA that serve as stabilizers against the salt-induced aggregation of AuNPs. The absorbance ratios A525/A625 of the reacted AuNP solutions were used to quantify the amount of microRNA. The assay works in the range of 5–25 pmol microRNA. The lower limit of detection (LOD) is 10 pmol. The performance of the method was tested by detection of microRNA-210-3p in totally extracted urinary microRNA from normal, benign, and bladder cancer subjects. The sensitivity and specificity for qualitative detection of urinary microRNA-210-3p using the assay are 74% and 88% respectively, which is consistent with real time PCR based assays. The assay was applied to the determination of specific microRNA by using its specific oligo targeter or following magnetic isolation of the desired microRNA. The method is simple, cost-efficient, has a short turn-around time and requires minimal equipment and personnel.

Schematic of the two detection schemes: In the first approach, matched microRNA hybridizes with its specific probe to stabilize gold nanoparticles (AuNPs) against salt induced aggregation and to leave the red color of the AuNPs unchanged. In the second one, microRNA extracted via magnetic nanoparticles (MNP) stabilizes AuNPs against aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

    Article  CAS  Google Scholar 

  2. Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ (2004) Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 279:42230–42239. https://doi.org/10.1074/jbc.M404931200

    Article  CAS  Google Scholar 

  3. Iorio MV, Croce CM (2017) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 9:582. https://doi.org/10.15252/emmm.201707779

    Article  Google Scholar 

  4. Ben-Dov IZ, Tan YC, Morozov P, Wilson PD, Rennert H, Blumenfeld JD, Tuschl T (2014) Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS One 9:e86856. https://doi.org/10.1371/journal.pone.0086856

    Article  Google Scholar 

  5. Verjans R, Van Bilsen M, Schroen B (2017) MiRNA Deregulation in Cardiac Aging and Associated Disorders. Int Rev Cell Mol Biol 334:207–263. https://doi.org/10.1016/bs.ircmb.2017.03.004

    Article  Google Scholar 

  6. Cheng G (2015) Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev 81:75–93. https://doi.org/10.1016/j.addr.2014.09.001

    Article  CAS  Google Scholar 

  7. Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 5:1122–1143. https://doi.org/10.7150/thno.11543

    Article  CAS  Google Scholar 

  8. Wang J, Chen J, Sen S (2016) MicroRNA as Biomarkers and Diagnostics. J Cell Physiol 231:25–30. https://doi.org/10.1002/jcp.25056

    Article  CAS  Google Scholar 

  9. Leshkowitz D, Horn-Saban S, Parmet Y, Feldmesser E (2013) Differences in microRNA detection levels are technology and sequence dependent. RNA 19:527–538. https://doi.org/10.1261/rna.036475.112

    Article  CAS  Google Scholar 

  10. Tian T, Wang J, Zhou X (2015) A review: microRNA detection methods. Org Biomol Chem 13:2226–2238. https://doi.org/10.1039/c4ob02104e

    Article  CAS  Google Scholar 

  11. Hwang DW, Song IC, Lee DS, Kim S (2010) Smart magnetic fluorescent nanoparticle imaging probes to monitor micro RNAs. Small 6:81–88. https://doi.org/10.1002/smll.200901262

    Article  CAS  Google Scholar 

  12. Li C, Li Z, Jia H, Yan J (2011) One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem Commun 47:2595–2597. https://doi.org/10.1039/c0cc03957h

    Article  CAS  Google Scholar 

  13. Li F, Peng J, Wang J, Tang H, Tan L, Xie Q, Yao S (2014) Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens Bioelectron 54:158–164. https://doi.org/10.1016/j.bios.2013.10.061

    Article  CAS  Google Scholar 

  14. Zhu X, Zhou X, Xing D (2013) Label-free detection of micro-RNA: two-step signal enhancement with a hairpin-probebased graphene fluorescence switch and isothermal amplification. Chemistry 19:5487–5494. https://doi.org/10.1002/chem.201204605

    Article  CAS  Google Scholar 

  15. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847. https://doi.org/10.1021/mp3005885

    Article  CAS  Google Scholar 

  16. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141. https://doi.org/10.1016/S0030-4018(03)01357-9

    Article  CAS  Google Scholar 

  17. Huang KS, Lin YC, Su KC, Chen HY (2007) An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation. Biomed Microdevices 9:761–768. https://doi.org/10.1007/s10544-007-9087-x

    Article  Google Scholar 

  18. Liandris E, Gazouli M, Andreadou M, Comor M, Abazovic N, Sechi LA, Ikonomopoulos J (2009) Direct detection of unamplified DNA from pathogenic mycobacteria using DNA-derivatized gold nanoparticles. J Microbiol Methods 78:260–264. https://doi.org/10.1016/j.mimet.2009.06.009

    Article  CAS  Google Scholar 

  19. Nossier AI, Mohammed OS, Fakhr El-Deen RR, Zaghloul AS, Eissa S (2016) Gelatin-modified Gold Nanoparticles for Direct Detection of Urinary total Gelatinase activity: Diagnostic value in Bladder Cancer. Talanta 161:511–519. https://doi.org/10.1016/j.talanta.2016.09.015

    Article  CAS  Google Scholar 

  20. Bonomi R, Cazzolaro A, Sansone A, Scrimin P, Prins LJ (2011) Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles. Angew Chem Int Ed Eng 50:2307–2312. https://doi.org/10.1002/anie.201007389

    Article  CAS  Google Scholar 

  21. He S, Liu DB, Wang Z, Cai KY, Jiang XY (2011) Utilization of unmodified gold nanoparticles in colorimetric detection. Sci China Phys Mech Astron 54:1757–1765. https://doi.org/10.1007/s11433-011-4486-7

    Article  Google Scholar 

  22. Li H, Rothberg LJ (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039. https://doi.org/10.1073/pnas.0406115101

    Article  CAS  Google Scholar 

  23. Li H, Rothberg LJ (2005) Detection of Specific Sequences in RNA Using Differential Adsorption of Single-Stranded Oligonucleotides on Gold Nanoparticles. Anal Chem 77:6229–6233. https://doi.org/10.1021/ac050921y

    Article  CAS  Google Scholar 

  24. Farkhari N, Abbasian S, Moshaii A, Nikkhah M (2016) Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: Investigating some important parameters in bio-sensing applications. Colloids Surf B: Biointerfaces 148:657–664. https://doi.org/10.1016/j.colsurfb.2016.09.022

    Article  CAS  Google Scholar 

  25. Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1:324–336. https://doi.org/10.1038/nprot.2006.51

    Article  CAS  Google Scholar 

  26. Eissa S, Matboli M, Hegazy MG, Kotb YM, Essawy NO (2015) Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis. Transl Res 165:731–739. https://doi.org/10.1016/j.trsl.2014.12.008

    Article  CAS  Google Scholar 

  27. Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, Gwinner W, Thum T (2011) Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 11:2221–2227. https://doi.org/10.1111/j.1600-6143.2011.03679.x

    Article  CAS  Google Scholar 

  28. Kilil GK, Tilton L, Karbiwnyk CM (2016) NaOH concentration and streptavidin bead type are key factors for optimal DNA aptamer strand separation and isolation. BioTechniques 61:114–116. https://doi.org/10.2144/000114449

    Google Scholar 

  29. Liu X, Wang Y, Chen P, Wang Y, Zhang J, Aili D, Liedberg B (2014) Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin a light chain. Anal Chem 86:2345–2352. https://doi.org/10.1021/ac402626g

    Article  CAS  Google Scholar 

  30. Li ZJ, Zheng XJ, Zhang L, Liang RP, Li ZM, Qiu JD (2015) Label-free colorimetric detection of biothiols utilizing SAM and un-modified Au nanoparticles. Biosens Bioelectron 68:668–674. https://doi.org/10.1016/j.bios.2015.01.062

    Article  CAS  Google Scholar 

  31. Nelson EM, Rothberg LJ (2011) Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution. Langmuir 27:1770–1777. https://doi.org/10.1021/la102613f

    Article  CAS  Google Scholar 

  32. Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184:4323–4330. https://doi.org/10.1007/s00604-017-2475-x

    Article  CAS  Google Scholar 

  33. Zhou Y, Li B, Wang M, Wang J, Yin H, Ai S (2017) Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta 184:4359–4365. https://doi.org/10.1007/s00604-017-2450-6

    Article  CAS  Google Scholar 

  34. Shi HY, Yang L, Zhou XY, Bai J, Gao J, Jia HX, Li QG (2017) A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Microchim Acta 184:525–531. https://doi.org/10.1007/s00604-016-2030-1

    Article  CAS  Google Scholar 

  35. Sang Y, Xu Y, Xu L, Cheng W, Li X, Wu J, Ding S (2017) Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Microchim Acta 184(7):2465–2471. https://doi.org/10.1007/s00604-017-2238-8

    Article  CAS  Google Scholar 

  36. Zeng K, Li H, Peng Y (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta. https://doi.org/10.1007/s00604-017-2276-2

  37. Borghei YS, Hosseini M, Ganjali MR (2017) Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184:2671–2677. https://doi.org/10.1007/s00604-017-2272-6

    Article  CAS  Google Scholar 

  38. Ji X, Lv H, Ma M, Lv B, Ding C (2017) An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates. Microchim Acta 184(8):2505–2513. https://doi.org/10.1007/s00604-017-2248-6

    Article  CAS  Google Scholar 

  39. Paul A, Avci-Adali M, Ziemer G, Wendel HP (2009) Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX. Oligonucleotides 19:243–254. https://doi.org/10.1089/oli.2009.0194

    Article  CAS  Google Scholar 

  40. Svobodová M, Pinto A, Nadal P, O’Sullivan CK (2012) Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem 404:835–842. https://doi.org/10.1007/s00216-012-6183-4

    Article  Google Scholar 

  41. Liang C, Li D, Zhang G, Li H, Shao N, Liang Z, Zhang L, Lu A, Zhang G (2015) Comparison of the methods for generating single-stranded DNA in SELEX. Analyst 140:3439–3444. https://doi.org/10.1039/c5an00244c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the national grant: RSTDF 6635. Authors acknowledge Professor Mohamed Esmat, Prof of urology for provision of clinical samples and patient’s data. The National patent application number of this work is 1631/2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Ibrahim Nossier or Sanaa Eissa.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nossier, A.I., Abdelzaher, H., Matboli, M. et al. Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles. Microchim Acta 185, 236 (2018). https://doi.org/10.1007/s00604-018-2767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2767-9

Keywords

Navigation