Skip to main content
Log in

Colorimetric detection of Hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It is shown that triangular silver nanoplates (TAgNPs) are viable colorimetric probes for the fast, sensitive and selective detection of Hg(II). Detection is accomplished by reducing Hg(II) ions to elemental Hg so that an Ag/Hg amalgam is formed on the surface of the TAgNPs. This leads to the inhibition of the etching TAgNPs by chloride ions. Correspondingly, a distinct color transition can be observed that goes from yellow to brown, purple, and blue. The color alterations extracted from the red, green, and blue part of digital (RGB) images can be applied to the determination of Hg(II). The relationship between the Euclidean distances (EDs), i.e. the square roots of the sums of the squares of the ΔRGB values, vary in the 5 nM to 100 nM Hg(II) concentration range, and the limit of detection is as low as 0.35 nM. The color changes also allow for a visual estimation of the concentrations of Hg(II). The method is simple in that it only requires a digital camera for data acquisition and a Photoshop software for extracting RGB variations and data processing.

Hg2+ detection was achieved by anti-etching of TAgNPs caused by the formation of silver amalgam, along with vivid multicolor variations from yellow to brown, purple, and eventually to be blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bings NH, Bogaerts A, Broekaert JAC (2006) Atomic spectroscopy. Anal Chem 78:3917–3945

    Article  CAS  Google Scholar 

  2. Wang Y, Yang F, Yang XR (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998

    Article  CAS  Google Scholar 

  3. Mohan A, Kizhakayil RN (2016) Graphene-rhodamine nanoprobe for colorimetric and fluorimetric Hg2+ ion assay. ACS Appl Mater Interfaces 8:14125–14132

    Article  CAS  Google Scholar 

  4. Lopez-Garcia I, Rivas RE, Hernandez-Cordoba M (2012) Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 743:69–74

    Article  CAS  Google Scholar 

  5. Li Y, Chen C, Li B, Sun J, Wang JX, Gao YX, Zhao YL, Chai ZF (2006) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J Anal At Spectrom 21:94–96

    Article  Google Scholar 

  6. Edwards SC, Macleod CL, Corns WT, Williams TP, Lester JN (1996) Determination of organo-mercury and mercury in environmental samples by flow injection atomic fluorescence spectrophotometry. Int J Environ Anal Chem 63:187–193

    Article  CAS  Google Scholar 

  7. Yan WJ, Wang YJ, Zhuang H, Zhang JH (2015) DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion. Biosens Bioelectron 68:516–520

    Article  CAS  Google Scholar 

  8. Zhang T, Cheng ZG, Wang YB, Li ZG, Wang CX, Li YB, Fang Y (2010) Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett 10:4738–4741

    Article  CAS  Google Scholar 

  9. Zhang HY, Yang LQ, Zhou BJ, Liu WM, Ge JEC, Wu JS, Wang Y, Wang PF (2013) Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosens Bioelectron 47:391–395

    Article  CAS  Google Scholar 

  10. Liang GH, Zhang P, Li HX, Zhang ZY, Chen H, Zhang S (2012) Kong JL (2012) an efficient strategy for unmodified nucleotide-mediated dispersion of magnetic nanoparticles, leading to a highly sensitive MRI-based mercury ion assay. Anal Chim Acta 726:73–78

    Article  CAS  Google Scholar 

  11. Xu LG, Yin HH, Ma W, Kuang H, Wang LB, Xu CL (2015) Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens Bioelectron 67:472–476

    Article  CAS  Google Scholar 

  12. Zhang ZP, Tang AA, Liao SZ, Chen PF, Wu ZY, Shen GL, Yu RQ (2011) Oligonucleotide probes applied for sensitive enzyme-amplified electrochemical assay of mercury(II) ions. Biosens Bioelectron 26:3320–3324

    Article  CAS  Google Scholar 

  13. Yang YQ, Kang MM, Fang SM, Wang MH, He LH, Zhao JH, Zhang HZ, Zhang ZH (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors Actuators B Chem 214:63–69

    Article  CAS  Google Scholar 

  14. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58

    Article  CAS  Google Scholar 

  15. Liu XJ, Wu ZJ, Zhang QQ, Zhao WF, Zong CH, Gai HW (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem 88:2119–2124

    Article  CAS  Google Scholar 

  16. Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, Xu JJ (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis (4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153

    Article  CAS  Google Scholar 

  17. Zhang LY, Chen MX, Jiang YL, Chen MM, Ding YN, Liu QY (2017) A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sensors Actuators B Chem 239:28–35

    Article  CAS  Google Scholar 

  18. Sun LF, Ding YY, Jiang YL, Liu QY (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors Actuators B Chem 239:848–856

    Article  CAS  Google Scholar 

  19. Liu QY, Yang YT, Lv XT, Ding YN, Zhang YZ, Jing JJ, Xu CX (2017) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734

    Article  CAS  Google Scholar 

  20. Li YL, Li ZH, Gao YX, Gong A, Zhang YJ, Hosmane NS, Shen ZY, Wu AG (2014) “Red-to-blue” colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nano 6:10631–10637

    CAS  Google Scholar 

  21. Deng L, Ouyang XY, Jin JY, Ma C, Jiang Y, Zheng J, Li JS, Li YH, Tan WH, Yang RH (2013) Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming ag/hg amalgam. Anal Chem 85:8594–8600

    Article  CAS  Google Scholar 

  22. Fang X, Ren H, Zhao H, Li Z (2017) Ultrasensitive visual and colorimetric determination of dopamine based on the prevention of etching of silver nanoprisms by chloride. Microchim Acta 184:415–421

    Article  CAS  Google Scholar 

  23. Gong Y, Zhang X, Chen Z, Yuan Y, Jin Z, Mei L, Zhang J, Tan W, Shen G, Yu R (2012) An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg2+ in aqueous samples. Analyst 137:932–938

    Article  CAS  Google Scholar 

  24. Bi N, Hu M, Xu J, Jia L (2017) Colorimetric determination of mercury(II) based on the inhibition of the aggregation of gold nanorods coated with 6-mercaptopurine. Microchim Acta 184:3961–3967

    Article  CAS  Google Scholar 

  25. Liu S, Leng X, Wang X, Pei Q, Cui X, Wang Y, Huang J (2017) Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification. Microchim Acta 184:1969–1976

    Article  CAS  Google Scholar 

  26. Zhan L, Yang T, Zhen SJ, Huang CZ (2017) Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III). Microchim Acta 184:3171–3178

    Article  CAS  Google Scholar 

  27. Zangeneh KK, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377

    Article  Google Scholar 

  28. Rameshkumar P, Huang NM, Wei LS (2016) Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim Acta 183:597–603

    Article  Google Scholar 

  29. Yang R, Song D, Wang CW, Zhu AN, Xiao R, Liu JQ, Long F (2015) Etching of unmodified au@ag nanorods: a tunable colorimetric visualization for the rapid and high selective detection of Hg2+. RSC Adv 5:102542–102549

    Article  CAS  Google Scholar 

  30. Wang YW, Wang LX, An FP, Xu H, Yin ZJ, Tang SR, Yang HH, Song HB (2017) Graphitic carbon nitride supported platinum nanocomposites for rapid and sensitive colorimetric detection of mercury ions. Anal Chim Acta 980:72–78

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the financial support of Scientific Research Project of Beijing Educational Committee (Grant No. KM201710028009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Zhengbo Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Triangular silver nanoplates as colorimetric probes for the fast, sensitive and selective detection of Hg2+

Electronic supplementary material

ESM 1

(DOC 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, L., Zhao, Y. et al. Colorimetric detection of Hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates. Microchim Acta 185, 235 (2018). https://doi.org/10.1007/s00604-018-2759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2759-9

Keywords

Navigation