Skip to main content
Log in

Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Persistent organic pollutants (POPs) are key pollutants due to their persistence, refractory biodegradation, high toxicity and bioaccumulation in the food chain. This review (with 93 refs.) covers the progress made in the past decades in the application of carbonaceous materials for electrochemical detection of POPs as listed in the Stockholm Convention. Following an introduction into the field, typical carbonaceous materials for use in electrodes are discussed, with subsection on carbon nanotubes, graphene, reduced graphene oxide, graphitic carbon nitride and carbon dots. This is followed by a section on application of carbonaceous materials in electrochemical detection, with subsections on the use of carbon nanotubes, of (doped-) graphene, of reduced graphene oxide, of graphitic carbon nitride, and of carbon dots. The review concludes with conclusions and future perspectives. The detection mechanisms of POPs are also discussed.

Advanced carbonaceous materials for the electrochemical determination of persistent organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haranczyk M, Puzyn T, Ng EG (2010) On enumeration of congeners of common persistent organic pollutants. Environ Pollut 158:2786–2789

    Article  CAS  Google Scholar 

  2. Magliano DJ, Loh VHY, Harding JL, Botton J, Shaw JE (2014) Persistent organic pollutants and diabetes: a review of the epidemiological evidence. Diabetes. Metabolism 40:1–14

    CAS  Google Scholar 

  3. Tang HP (2013) Recent development in analysis of persistent organic pollutants under the Stockholm convention. Trends Anal Chem 45:48–66

    Article  CAS  Google Scholar 

  4. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32:147–156

    Article  CAS  Google Scholar 

  5. Zacs D, Rjabova J, Viksna A, Bartkevics V (2015) Method development for the simultaneous determination of polybrominated, polychlorinated, mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls and polybrominated diphenyl ethers in fish. Chemosphere 118:72–80

    Article  CAS  Google Scholar 

  6. Han SY, Qiao JQ, Zhang YY, Yang LL, Lian HZ, Ge X, Chen HY (2011) Determination of n-octanol/water partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention time correction. Chemosphere 83:131–136

    Article  CAS  Google Scholar 

  7. Trojanowicz M, Koc M (2013) Recent developments in methods for analysis of perfluorinated persistent pollutants. Microchim Acta 180:957–971

    Article  CAS  Google Scholar 

  8. Kang Q, Yang LX, Chen YF, Luo SL, Wen LF, Cai QY, Yao SZ (2010) Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSexTe1-x/TiO2 nanotube structure-based label-free Immunosensor. Anal Chem 82:9749–9754

    Article  CAS  Google Scholar 

  9. JH X, Wang YZ, Qiu HX, Zhang YM (2014) The electrochemical oxidation of pentachlorophenol and its sensitive determination at chitosan modified carbon paste electrode. Russ J Electrochem 50:531–536

    Article  Google Scholar 

  10. Prathap MUA, Chaurasia AK, Sawant SN, Apte SK (2012) Polyaniline-based highly sensitive microbial biosensor for selective detection of Lindane. Anal Chem 84:6672–6678

    Article  Google Scholar 

  11. Kumaravel A, Vincent S, Chandrasekaran M (2013) Development of an electroanalytical sensor for gamma-hexachlorocyclohexane based on a cellulose acetate modified glassy carbon electrode. Anal Methods 5:931–938

    Article  CAS  Google Scholar 

  12. Vyskocil V, Barek J (2011) Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons. Curr Org Chem 15:3059–3076

    Article  CAS  Google Scholar 

  13. Wang YZ, Hu SS (2016) Applications of carbon nanotubes and graphene for electrochemical sensing of environmental pollutants. J Nanosci Nanotechnol 16:7852–7872

    Article  CAS  Google Scholar 

  14. Fang QL, Shen Y, Chen BL (2015) Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review. Chem Eng J 264:753–771

    Article  CAS  Google Scholar 

  15. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377

    Article  CAS  Google Scholar 

  16. YH X, Liu JQ, Gao CL, Wang EK (2014) Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun 48:151–154

    Article  Google Scholar 

  17. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  18. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193:24–34

    Article  Google Scholar 

  19. Bhushan B (2010) In: Bhushan B (ed) Springer Handbook of Nanotechnology. Springer-Verlag Berlin, Heidelberg

  20. Speltini A, Merli D, Profumo A (2013) Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal Chim Acta 783:1–16

    Article  CAS  Google Scholar 

  21. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55

    Article  CAS  Google Scholar 

  22. Dai LM, He PG, Li SN (2003) Functionalized surfaces based on polymers and carbon nanotubes for some biomedical and optoelectronic applications. Nanotechnology 14:1081–1097

    Article  CAS  Google Scholar 

  23. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. TrAC Trend Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  24. Herrera-Herrera AV, Gonzalez-Curbelo MA, Hernandez-Borges J, Rodriguez-Delgado MA (2012) Carbon nanotubes applications in separation science: a review. Anal Chim Acta 734:1–30

    Article  CAS  Google Scholar 

  25. Speltini A, Maiocchi M, Cucca L, Merli D, Profumo A (2014) Solid-phase extraction of PFOA and PFOS from surface waters on functionalized multiwalled carbon nanotubes followed by UPLC-ESI-MS. Anal Bioanal Chem 406:3657–3665

    Article  CAS  Google Scholar 

  26. André C, Aljhni R, Lethier L, Guillaume Y (2014) Development and evaluation of a new fluorinated double-wall carbon nanotube HPLC stationary phase. Chromatographia 77:1257–1265

    Article  Google Scholar 

  27. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  28. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  29. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    Article  CAS  Google Scholar 

  30. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  31. Liu Q, Shi JB, Sun JT, Wang T, Zeng LX, Jiang GB (2011) Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew Chem Int Ed 50:5913–5917

    Article  CAS  Google Scholar 

  32. Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC Trend Anal Chem 51:33–43

    Article  CAS  Google Scholar 

  33. Liu Q, Shi JB, Jiang GB (2012) Application of graphene in analytical sample preparation. TrAC Trend Anal Chem 37:1–11

    Article  Google Scholar 

  34. Wang X, Liu B, QP L, QS Q (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15

    Article  CAS  Google Scholar 

  35. Chen LY, Tang YH, Wang K, Liu CB, Luo SL (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  36. Liu CB, Wang K, Luo SL, Tang YH, Chen LY (2011) Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. Small 7:1203–1206

    Article  CAS  Google Scholar 

  37. Ambrosi A, Chua CK, Khezri B, Sofer Z, Webster RD, Pumera M (2012) Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. P Natl Acad Sci USA 109:12899–12904

    Article  CAS  Google Scholar 

  38. Groenewolt M, Antonietti M (2005) Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv Mater 17:1789–1792

    Article  CAS  Google Scholar 

  39. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  40. Hemley RJ, Teter DM (1996) Low-compressibility carbon nitrides. Science 271:53–55

    Article  Google Scholar 

  41. Wang Y, Wang XC, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89

    Article  CAS  Google Scholar 

  42. Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J Chem 26:508–512

    Article  CAS  Google Scholar 

  43. Dong YQ, Wang Q, HS W, Chen YM, CH L, Chi YW, Yang HH (2016) Graphitic carbon nitride materials: sensing, imaging and therapy. Small 12:5376–5393

    Article  CAS  Google Scholar 

  44. Fischer A, Thomas A, Goettmann F, Antonietti M, Muller JO, Schlogl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  Google Scholar 

  45. Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  46. Zhang XD, Xie X, Wang H, Zhang JJ, Pan BC, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21

    Article  CAS  Google Scholar 

  47. Coleman JN, Lotya M, O'Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  CAS  Google Scholar 

  48. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun'ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  49. Xu J, Zhang LW, Shi R, Zhu YF (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772

    Article  CAS  Google Scholar 

  50. Dong XP, Cheng FX (2015) Recent development in exfoliated two-dimensional C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652

    Article  CAS  Google Scholar 

  51. XY X, Ray R, YL G, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  Google Scholar 

  52. LeCroy GE, Yang ST, Yang F, Liu YM, Fernando KAS, Bunker CE, Hu Y, Luo PG, Sun YP (2016) Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 320:66–81

    Article  Google Scholar 

  53. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  Google Scholar 

  54. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem Commun 16:1804–1805

  55. Anirudhan TS, Alexander S (2015) Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (gamma-hexachlorocyclohexane), an organochlorine pesticide. Biosens Bioelectron 64:586–593

    Article  CAS  Google Scholar 

  56. Feng SX, Yang R, Ding XJ, Li JJ, Guo C, LB Q (2015) Sensitive electrochemical sensor for the determination of pentachlorophenol in fish meat based on ZnSe quantum dots decorated multiwall carbon nanotubes nanocomposite. Ionics 21:3257–3266

    Article  CAS  Google Scholar 

  57. Remes A, Pop A, Manea F, Baciu A, Picken SJ, Schoonman J (2012) Electrochemical determination of pentachlorophenol in water on a multi-wall carbon nanotubes-epoxy composite electrode. Sensors 12:7033–7046

    Article  CAS  Google Scholar 

  58. GX Y, Zhang WN, Zhao Q, WX W, Wei XY, Lu Q (2016) Enhancing the sensitivity of hexachlorobenzene electrochemical sensor based on nitrogen-doped graphene. Sensors Actuators B Chem 235:439–446

    Article  Google Scholar 

  59. Luo SL, Xiao H, Yang SL, Liu CB, Liang JS, Tang YH (2014) Ultrasensitive detection of pentachlorophenol based on enhanced electrochemiluminescence of au nanoclusters/graphene hybrids. Sensors Actuators B Chem 194:325–331

    Article  CAS  Google Scholar 

  60. WQ W, Xiao H, Luo SL, Liu CB, Tang YH, Yang LM (2016) A highly stable and effective electrochemiluminescence platform of copper oxide nanowires coupled with graphene for ultrasensitive detection of pentachlorophenol. Sensors Actuators B Chem 222:747–754

    Article  Google Scholar 

  61. Liang JS, Yang SL, Luo SL, Liu CB, Tang YH (2014) Ultrasensitive electrochemiluminescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes. Microchim Acta 181:759–765

    Article  CAS  Google Scholar 

  62. Zheng XL, Li HL, Xia FQ, Tian D, Hua XX, Qiao XY, Zhou CL (2016) An electrochemical sensor for ultrasensitive determination the polychlorinated biphenyls. Electrochim Acta 194:413–421

    Article  CAS  Google Scholar 

  63. Zhu GB, Zhang XH, Gai PB, Chen JH (2012) Enhanced electrochemical sensing for persistent organic pollutants by nanohybrids of graphene nanosheets that are noncovalently functionalized with cyclodextrin. Chem Aust 77:844–849

    CAS  Google Scholar 

  64. Zhu GB, Wu L, Zhang X, Liu W, Zhang XH, Chen JH (2013) A new dual-signalling electrochemical sensing strategy based on competitive host-guest interaction of a beta-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode: sensitive electrochemical determination of organic pollutants. Chem Eur J 19:6368–6373

    Article  CAS  Google Scholar 

  65. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  66. Yu Y, Chen X, Wei Y, Liu JH, Huang XJ (2012) Strategy for polychlorinated biphenyl detection based on specific inhibition of charge transport using a nanogapped gold particle film. Anal Chem 84:9818–9824

    Article  CAS  Google Scholar 

  67. Li JX, Yang LX, Luo SL, Chen BB, Li J, Lin HL, Cai QY, Yao SZ (2010) Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating ag/TiO2 nanotubes. Anal Chem 82:7357–7361

    Article  CAS  Google Scholar 

  68. Wu P, Hou XD, JJ X, Chen HY (2014) Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev 114:11027–11059

    Article  CAS  Google Scholar 

  69. Yang SL, Liang JS, Luo SL, Liu CB, Tang YH (2013) Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene. Anal Chem 85:7720–7725

    Article  CAS  Google Scholar 

  70. Tian JQ, Liu Q, Asiri AM, Qusti AH, Al-Youbi AO, Sun XP (2013) Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nano 5:11604–11609

    CAS  Google Scholar 

  71. Liu JW, Luo Y, Wang YM, Duan LY, Jiang JH, Yu RQ (2016) Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose. ACS Appl Mater Interfaces 8:33439–33445

    Article  CAS  Google Scholar 

  72. Ding LL, Ge JP, Zhou WQ, Gao JP, Zhang ZY, Xiong Y (2016) Nanogold-functionalized g-C3N4 nanohybrids for sensitive impedimetric immunoassay of prostate-specific antigen using enzymatic biocatalytic precipitation. Biosens Bioelectron 85:212–219

    Article  CAS  Google Scholar 

  73. Zhang JL, Zhu ZW, Di JW, Long YM, Li WF, YF T (2015) A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode. Electrochim Acta 186:192–200

    Article  CAS  Google Scholar 

  74. Cheng CM, Huang Y, Tian XQ, Zheng BZ, Li Y, Yuan HY, Xiao D, Xie SP, Choi MMF (2012) Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem 84:4754–4759

    Article  CAS  Google Scholar 

  75. Feng YQ, Wang QB, Lei JP, HX J (2015) Electrochemiluminescent DNA sensing using carbon nitride nanosheets as emitter for loading of hemin labeled single-stranded DNA. Biosens Bioelectron 73:7–12

    Article  CAS  Google Scholar 

  76. Chen SH, Li AM, Zhang LZ, Gong JM (2015) Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid. Anal Chim Acta 896:68–77

    Article  CAS  Google Scholar 

  77. HF X, Zhu X, Dong YQ, HS W, Chen YM, Chi YW (2016) Highly sensitive electrochemiluminescent sensing platform based on graphite carbon nitride nanosheets for detection of pyrophosphate ion in the synovial fluid. Sensors Actuators B Chem 236:8–15

    Article  Google Scholar 

  78. Xia BY, Chu MF, Wang SF, Wang WQ, Yang SL, Liu CB, Luo SL (2015) Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+. Anal Chim Acta 891:113–119

    Article  CAS  Google Scholar 

  79. Cheng NY, Jiang P, Liu Q, Tian JQ, Asiri AM, Sun XP (2014) Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst 139:5065–5068

    Article  CAS  Google Scholar 

  80. Shang QW, Zhou ZX, Shen YF, Zhang YY, Li Y, Liu SQ, Zhang YJ (2015) Potential-modulated electrochemiluminescence of carbon nitride nanosheets for dual-signal sensing of metal ions. ACS Appl Mater Interfaces 7:23672–23678

    Article  CAS  Google Scholar 

  81. Xia BY, Yuan QM, Chu MF, Wang SF, Gao R, Yang SL, Liu CB, Luo SL (2016) Directly one-step electrochemical synthesis of graphitic carbon nitride/graphene hybrid and its application in ultrasensitive electrochemiluminescence sensing of pentachlorophenol. Sensors Actuators B Chem 228:565–572

    Article  CAS  Google Scholar 

  82. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PJG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  83. Dong YQ, Chen CQ, Lin JP, Zhou NN, Chi YW, Chen GN (2013) Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon 56:12–17

    Article  CAS  Google Scholar 

  84. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  CAS  Google Scholar 

  85. Li LL, GH W, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nano 5:4015–4039

    CAS  Google Scholar 

  86. Xue W, Lin Z, Chen H, Lu C, Lin JM (2011) Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots. J Phys Chem C 115:21707–21714

    Article  CAS  Google Scholar 

  87. Dong YQ, Zhou NN, Lin XM, Lin JP, Chi YW, Chen GN (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22:5895–5899

    Article  CAS  Google Scholar 

  88. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  89. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565

    Article  CAS  Google Scholar 

  90. Tian L, Ghosh D, Chen W, Pradhan S, Chang XJ, Chen SW (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809

    Article  CAS  Google Scholar 

  91. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551

    Article  CAS  Google Scholar 

  92. Xu Y, Wu M, Feng XZ, Yin XB, He XW, Zhang YK (2013) Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chem Eur J 19:6282–6288

    Article  CAS  Google Scholar 

  93. Li JZ, Wang NY, Tran TT, Huang CA, Chen L, Yuan LJ, Zhou LP, Shen R, Cai QY (2013) Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots. Analyst 138:2038–2043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21504085), Foundation for Special Talents in China Academy of Engineering Physics (No. TP02201503, TP02201704), Sichuan Science and Technology Development Foundation for Young Scientists (No. 2017JQ0050), the Development Foundation of Radiochemistry (No. XK909) from China Academy of Engineering Physics and Science and Technology Development Foundation of China Academy of Engineering Physics (No. 2015B0301063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfu Chu or Binyuan Xia.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, Y., Wang, S. et al. Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review. Microchim Acta 185, 112 (2018). https://doi.org/10.1007/s00604-017-2638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2638-9

Keywords

Navigation