Skip to main content
Log in

Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN)6 3− which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%.

Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tang Y, Li M, Gao X, Liu X, Ma Y, Li Y, Xu Y, Li J (2016) Preconcentration of the antibiotic enrofloxacin using a hollow molecularly imprinted polymer, and its quantitation by HPLC. Microchim Acta 183(2):589–596. https://doi.org/10.1007/s00604-015-1681-7

    Article  CAS  Google Scholar 

  2. Gomaa A, Boye J (2015) Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem 175:585–592

    Article  CAS  Google Scholar 

  3. Cheng C, Liu S, Xiao D, Hansel S (2010) The application of trichloroacetic acid as an ion pairing reagent in LC–MS–MS method development for highly polar aminoglycoside compounds. Chromatographia 72(1–2):133–139. https://doi.org/10.1365/s10337-010-1614-x

    Article  CAS  Google Scholar 

  4. Zhou JL, Maskaoui K, Lufadeju A (2012) Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography-mass spectrometry/mass spectrometry. Anal Chim Acta 731:32–39. https://doi.org/10.1016/j.aca.2012.04.021

    Article  CAS  Google Scholar 

  5. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Jiang Y, Hou D, Wang J (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184(1):203–210. https://doi.org/10.1007/s00604-016-2011-4

    Article  CAS  Google Scholar 

  6. Tang Y, Li M, Gao X, Liu X, Gao J, Ma T, Li J (2017) A NIR-responsive up-conversion nanoparticle probe of the NaYF4:Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin. Microchim Acta 184(9):3469–3475. https://doi.org/10.1007/s00604-017-2387-9

    Article  CAS  Google Scholar 

  7. Wang X, Zou M, Xu X, Lei R, Li K, Li N (2009) Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles. Anal Bioanal Chem 395(7):2397–2403. https://doi.org/10.1007/s00216-009-3134-9

    Article  CAS  Google Scholar 

  8. Altria K, Chanter Y (1993) Validation of a capillary electrophoresis method for the determination of a quinolone antibiotic and its related impurities. J Chromatogr A 652(2):459–463. https://doi.org/10.1016/0021-9673(93)83266-U

    Article  CAS  Google Scholar 

  9. Lai C, Liu X, Qin L, Zhang C, Zeng G, Huang D, Cheng M, Xu P, Yi H, Huang D (2017) Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim Acta 184(7):2097–2105. https://doi.org/10.1007/s00604-017-2218-z

    Article  CAS  Google Scholar 

  10. Lavaee P, Danesh NM, Ramezani M, Abnous K, Taghdisi SM (2017) Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Microchim Acta 184(7):2039–2045. https://doi.org/10.1007/s00604-017-2213-4

    Article  CAS  Google Scholar 

  11. Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/j.bios.2017.03.031

    Article  CAS  Google Scholar 

  12. Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184(5):1267–1283. https://doi.org/10.1007/s00604-017-2179-2

    Article  CAS  Google Scholar 

  13. Han C, Li R, Li H, Liu S, Xu C, Wang J, Wang Y, Huang J (2017) Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim Acta 184(8):2941–2948. https://doi.org/10.1007/s00604-017-2311-3

    Article  CAS  Google Scholar 

  14. Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183(2):723–729. https://doi.org/10.1007/s00604-015-1718-y

    Article  CAS  Google Scholar 

  15. Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X, Tan W (2013) Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 135(49):18644–18650. https://doi.org/10.1021/ja4094617

    Article  CAS  Google Scholar 

  16. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769. https://doi.org/10.1021/ja046970u

    Article  CAS  Google Scholar 

  17. Wang Y, Gao D, Zhang P, Gong P, Chen C, Gao G, Cai L (2014) A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem Commun 50(7):811–813. https://doi.org/10.1039/C3CC47649A

    Article  CAS  Google Scholar 

  18. Bala R, Kumar M, Bansal K, Sharma RK, Wangoo N (2016) Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens Bioelectron 85:445–449. https://doi.org/10.1016/j.bios.2016.05.042

    Article  CAS  Google Scholar 

  19. Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182(5–6):917–923. https://doi.org/10.1007/s00604-014-1406-3

    Article  CAS  Google Scholar 

  20. Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J (2016) Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron 79:644–649. https://doi.org/10.1016/j.bios.2015.12.102

    Article  CAS  Google Scholar 

  21. Li J, Sun M, Wei X, Zhang L, Zhang Y (2015) An electrochemical aptamer biosensor based on "gate-controlled" effect using β-cyclodextrin for ultra-sensitive detection of trace mercury. Biosens Bioelectron 74:423–426. https://doi.org/10.1016/j.bios.2015.06.061

    Article  CAS  Google Scholar 

  22. Huang K-J, Liu Y-J, Zhang J-Z, Cao J-T, Liu Y-M (2015) Aptamer/au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosens Bioelectron 67:184–191. https://doi.org/10.1016/j.bios.2014.08.010

    Article  CAS  Google Scholar 

  23. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM, Emrani AS (2017) A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Sensors Actuators B Chem 240:100–106. https://doi.org/10.1016/j.snb.2016.08.100

    Article  CAS  Google Scholar 

  24. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252. https://doi.org/10.1038/nprot.2006.38

    Article  CAS  Google Scholar 

  25. Yin H, Zhou Y, Zhang H, Meng X, Ai S (2012) Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron 33(1):247–253. https://doi.org/10.1016/j.bios.2012.01.014

    Article  CAS  Google Scholar 

  26. Song K-M, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, JK K, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181. https://doi.org/10.1016/j.ab.2011.04.007

    Article  CAS  Google Scholar 

  27. Blanchaert B, Jorge EP, Jankovics P, Adams E, Van Schepdael A (2013) Assay of kanamycin a by HPLC with direct UV detection. Chromatographia 76(21–22):1505–1512. https://doi.org/10.1007/s10337-013-2440-8

    Article  CAS  Google Scholar 

  28. Kim B-H, Kim Y-K, Ok JH (2001) Development of liquid chromatographic method for the analysis of kanamycin residues in varicella vaccine using phenylisocyanate as a derivatization reagent. J Chromatogr B 752(1):173–177. https://doi.org/10.1016/S0378-4347(00)00506-5

    Article  CAS  Google Scholar 

  29. Zhu Y, Chandra P, Song K-M, Ban C, Shim Y-B (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36(1):29–34. https://doi.org/10.1016/j.bios.2012.03.034

    Article  CAS  Google Scholar 

  30. Wang C, Liu C, Luo J, Tian Y, Zhou N (2016) Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal Chim Acta 936:75–82. https://doi.org/10.1016/j.aca.2016.07.013

    Article  CAS  Google Scholar 

  31. Li H, Sun D-e, Liu Y, Liu Z (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156. https://doi.org/10.1016/j.bios.2013.11.079

    Article  CAS  Google Scholar 

  32. Yang W-C, A-M Y, Chen H-Y (2001) Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis. J Chromatogr A 905(1–2):309–318. https://doi.org/10.1016/S0021-9673(00)00985-7

    Article  CAS  Google Scholar 

  33. Ge S, Tang W, Han R, Zhu Y, Wang Q, He P, Fang Y (2013) Sensitive analysis of aminoglycoside antibiotics via hyphenation of transient moving substitution boundary with field-enhanced sample injection in capillary electrophoresis. J Chromatogr A 1295:128–135. https://doi.org/10.1016/j.chroma.2013.04.049

    Article  CAS  Google Scholar 

  34. Leung K-H, He H-Z, Chan DS-H, Fu W-C, Leung C-H, Ma D-L (2013) An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution. Sensors Actuators B Chem 177:487–492. https://doi.org/10.1016/j.snb.2012.11.053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0800304), the Natural Science Foundation of Shandong (ZR2017MD023), Project of the Distinguished Young Scholar of Shandong Agricultural University, Founds of Shandong “Double Tops” Program (SYL2017XTTD15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlei Zhou.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ma, K., Yin, H. et al. Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles. Microchim Acta 185, 68 (2018). https://doi.org/10.1007/s00604-017-2566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2566-8

Keywords

Navigation