Skip to main content
Log in

A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical sensor for nitrite that is based on the use of a screen printed carbon electrode modified with palladium nanoparticles and an amino-functionalized metal-organic framework. The morphology and properties of the resulting material were examined by X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetry, FTIR spectroscopy and transmission electron microscopy. Nitrite was chosen as a model analyte to evaluate the electron transfer performance of the modified SPCE. Its preparation conditions were optimized. The response to nitrite was studied via cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry. Under the optimal conditions, the oxidation current (typically measured at −0.86 V vs Ag/AgCl) increases linearly in the 5 to 150 nM nitrite concentration range, and the detection limit is 1.3 nM. The sensor was applied to the detection of nitrite in (spiked) sausage and pickle samples. It is highly selective to nitrite in the presence of high concentrations of other electro-active compounds, stable, and well reproducible. In our perception, the sensor presented here reveals the large potential of MOF-based hybrid materials for use as an electrode material.

A screen printed electrode (SPCE) modified with a metal organic framework of the type Pd/NH2-MIL-101(Cr) is found to be ultra-sensitive for nitrite detection with excellent stability, high selectivity, acceptable repeatability and reproducibility. The sensor is designed specifically to detect nitrite in sausage and pickle samples with an excellent detection limit of 1.3 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang C, Liu X, Demir NK, Chen JP, Li K (2016) Applications of water stable metal–organic frameworks. Chem Soc Rev 45:5107

    Article  CAS  Google Scholar 

  2. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172

    Article  CAS  Google Scholar 

  3. Chen L, Chen H, Luque R, Li Y (2014) Metal-organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem Sci 5:3708

    Article  CAS  Google Scholar 

  4. Yang J, Yang L, Ye H, Zhao F, Zeng B (2016) Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal-organic framework for the detection of nitrite. Electrochim Acta 219:647–654

    Article  CAS  Google Scholar 

  5. Carson F, Pascanu V, Bermejo Gómez A, Zhang Y, Platero-Prats AE, Zou X, Martín-Matute B (2015) Influence of the base on Pd@ MIL-101-NH2 (Cr) as catalyst for the Suzuki–Miyaura cross-coupling reaction. Chem Eur J 21:10896

    Article  CAS  Google Scholar 

  6. Cheng D, Li X, Qiu Y, Chen Q, Zhou J, Yang Y, Xie Z, Liu P, Cai W, Zhang C (2017) A simple modified electrode based on MIL-53 (Fe) for the highly sensitive detection of hydrogen peroxide and nitrite. Anal Methods 9:2082

    Article  CAS  Google Scholar 

  7. Kumar RS, Kumar SS, Kulandainathan MA (2012) Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem Commun 25:70

    Article  Google Scholar 

  8. Vilian ATE, Puthiaraj P, Kwak CH, Hwang SK, Huh YS, Ahn WS, Han YK (2016) Fabrication of palladium nanoparticles on porous aromatic frameworks as a sensing platform to detect vanillin. ACS Appl Mater Interfaces 8:12740

    Article  CAS  Google Scholar 

  9. da Silva CTP, Veregue FR, Aguiar LW, Meneguin JG, Moisés MP, Fávaro SL, Radovanovic E, Girotto EM, Rinaldi AW (2016) AuNp@ MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. New J Chem 40:8872

    Article  Google Scholar 

  10. Yadav DK, Ganesan V, Sonkar PK, Gupta R, Rastogi PK (2016) Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim Acta 200:276

    Article  CAS  Google Scholar 

  11. Ikhsan NI, Rameshkumar P, Pandikumar A, Shahid MM, Huang NM, Kumar SV, Lim HN (2015) Facile synthesis of graphene oxide–silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 144:908

    Article  CAS  Google Scholar 

  12. Zuo J, Zhang Z, Jiao J, Pang H, Zhang D, Ma H (2016) Sensitive and selective nitrite sensor based on phosphovanadomolybdates H6[PMo9V3O40], poly (3, 4-ethylenedioxythiophene) and Au nanoparticles. Sensors Actuators B 236:418

    Article  CAS  Google Scholar 

  13. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2:933

    Article  CAS  Google Scholar 

  14. Amin D, Saleem K, Bashir W (1982) Titrimetric determination of chloramine-T and some aldoses by amplification reactions. Talanta 29:694

    Article  CAS  Google Scholar 

  15. Hassan SS, Marzouk SA, Sayour HE (2003) Selective potentiometric determination of nitrite ion using a novel (4-sulphophenylazo-) 1-naphthylamine membrane sensor. Talanta 59:1237

    Article  CAS  Google Scholar 

  16. Lin Z, Dou X, Li H, Ma Y, Lin JM (2015) Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate. Talanta 132:457

    Article  CAS  Google Scholar 

  17. Frenzel W, Schulz-Brüssel J, Zinvirt B (2004) Characterisation of a gas-diffusion membrane-based optical flow-through sensor exemplified by the determination of nitrite. Talanta 64:278

    Article  CAS  Google Scholar 

  18. Zhang D, Fang Y, Miao Z, Ma M, Du X, Takahashi S, Ji A, Chen Q (2013) Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim Acta 107:656

    Article  CAS  Google Scholar 

  19. Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965

    Article  CAS  Google Scholar 

  20. Wen M, Mori K, Kamegawa T, Yamashita H (2014) Amine-functionalized MIL-101 (Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chem Commun 50:11645

    Article  CAS  Google Scholar 

  21. Saikia M, Saikia L (2016) Palladium nanoparticles immobilized on an amine-functionalized MIL-101 (Cr) as a highly active catalyst for oxidative amination of aldehydes. RSC Adv 6:14937–14947

    Article  CAS  Google Scholar 

  22. Luan Y, Yang M, Ma Q, Qi Y, Gao H, Wu Z, Wang G (2016) Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties. J Mater Chem A 4:7641–7649

    Article  CAS  Google Scholar 

  23. Guidelli R, Pergola F, Raspi G (1972) Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media. Anal Chem 44:745–755

    Article  CAS  Google Scholar 

  24. Wang J, Hui N (2017) A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Microchim Acta 184:2411

    Article  CAS  Google Scholar 

  25. Huang SS, Liu L, Mei LP, Zhou JY, Guo FY, Wang AJ, Feng JJ (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791

    Article  CAS  Google Scholar 

  26. Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1055

    Article  CAS  Google Scholar 

  27. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly (3, 4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721

    Article  CAS  Google Scholar 

  28. Wu W, Li Y, Jin J, Wu H, Wang S, Ding Y, Ou J (2016) Sensing nitrite with a glassy carbon electrode modified with a three-dimensional network consisting of Ni7S6 and multi-walled carbon nanotubes. Microchim Acta 183:3159

    Article  CAS  Google Scholar 

  29. Zhang F, Yuan Y, Zheng Y, Wang H, Liu T, Hou S (2017) A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite. Microchim Acta 184:1565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2016R1A2B4013374, 2017M2A2A6A01020938, and 2014R1A5A1009799), Bose Dinesh gratefully acknowledge the DST-SERB for a National Postdoctoral Fellowship (PDF/2015/000174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Suk Huh or Young-Kyu Han.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 5247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhil Vilian, A.T., Dinesh, B., Muruganantham, R. et al. A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Microchim Acta 184, 4793–4801 (2017). https://doi.org/10.1007/s00604-017-2513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2513-8

Keywords

Navigation