Skip to main content

Advertisement

Log in

A glassy carbon electrode modified with graphene nanoplatelets, gold nanoparticles and chitosan, and coated with a molecularly imprinted polymer for highly sensitive determination of prostate specific antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an amperometric assay for the detection of prostate specific antigen (PSA) that combines the advantages of using a molecularly imprinted polymer (MIP) and of a nanocomposite composed of  graphene nanoplatelets (graphene sheets; GS), gold nanoparticles (AuNPs) and chitosan (Chit). The GS-AuNP composite was synthesized by a single-step reduction of GS and HAuCl4 solution. The MIP was synthesized by electropolymerization of dopamine and characterized by scanning electron microscopy and differential pulse voltammetry (DPV). Sensitivity is strongly improved by the magnified current obtained by using the GS-AuNP hybrid. Chit was further employed as a film-forming material to prevent the leakage of nanomaterials. Under optimized conditions, the method displays good analytical performance for the detection of PSA by DPV and by using hexacyanoferrate as the electrochemical probe. The peak current (typically measured at 0.16 V vs. SCE) increases linearly in the 1 pg mL−1 to 100 ng mL−1 PSA concentration range, and the detection limit is 0.15 pg mL−1 at a signal to noise ratio of 3. The method was successfully applied to the determination of PSA in serum. The assay is highly selective, sensitive, reproducible and stable. In our perception, it represents an attractive alternative to the commercially available ELISA kits for PSA.

Schematic of a molecularly imprinted material obtained via electropolymerization of dopamine onto gold nanoparticles and placed, along with graphene nanoplatelets and chitosan on an electrode to detect prostate specific antigen (PSA). The sensor shows good specificity and accuracy for PSA detection in female serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu H, Levesque MA, Clark GM, Diamandis EP (1999) Enhanced prediction of breast cancer prognosis by evaluating expression of p53 and prostate-specific antigen in combination. Br J Cancer 81:490–495

    Article  CAS  Google Scholar 

  2. Yu F, Persson B, Lofas S, Knoll W (2004) Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level. Anal Chem 76:6765–6770

    Article  CAS  Google Scholar 

  3. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced raman scattering and immunogold labels. Anal Chem 75:5936–5943

    Article  CAS  Google Scholar 

  4. Black MH, Giai M, Ponzone R, Sismondi P, Yu H, Diamandis EP (2000) Serum total and free prostate-specific antigen for breast cancer diagnosis in women. Clin. Cancer Res 6:467–473

    CAS  Google Scholar 

  5. Moon JM, Kim YH, Cho Y (2014) A nanowire-based label-free immunosensor: direct incorporation of a PSA antibody in electropolymerized polypyrrole. Biosens Bioelectron 57:157–161

    Article  CAS  Google Scholar 

  6. Kim DJ, Lee NE, Park JS, Park IJ, Kim JG, Cho HJ (2010) Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron 25:2477–2482

    Article  CAS  Google Scholar 

  7. Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF (2011) Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron 26:4477–4483

    Article  CAS  Google Scholar 

  8. Wu L, Li M, Zhang M, Yan M, Ge S, Yu J (2013) Ultrasensitive electrochemiluminescence immunosensor for tumor marker detection based on nanoporous sliver@carbon dots as labels. Sensors Actuators B Chem 186:761–767

    Article  CAS  Google Scholar 

  9. Dey A, Kaushik A, Arya SK, Bhansali S (2012) Mediator free highly sensitive polyaniline–gold hybrid nanocomposite based immunosensor for prostate-specificantigen (PSA) detection. J Mater Chem 22:14763–14772

    Article  CAS  Google Scholar 

  10. Triroj N, Jaroenapibal P, Shi H, Yeh JI, Beresford R (2011) Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosens Bioelectron 26:2927–2933

    Article  CAS  Google Scholar 

  11. Liu J, Lu CY, Zhou H, Xu JJ, Wang ZH, Chen HY (2013) A dual-functional electrochemical biosensor for the detection of prostate specificantigen and telomerase activity. Chem Commun 49:6602–6604

    Article  CAS  Google Scholar 

  12. Suaifan GARY, Esseghaier C, Ng A, Zourob M (2012) Wash-less and highly sensitive assay for prostate specific antigen detection. Analyst 137:5614–5619

    Article  CAS  Google Scholar 

  13. Chuah K, Lai LMH, Goon IY, Parker SG, Amal R, Gooding JJ (2012) Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as dispersible electrodes. Chem Commun 48:3503–3505

    Article  CAS  Google Scholar 

  14. Acevedo B, Perera Y, Ruiz M, Rojas G, Benítez J, Ayala M, Gavilondo J (2002) Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clin Chim Acta 317:55–63

    Article  CAS  Google Scholar 

  15. Ma Y, Shen XL, Zeng Q, Wang HS, Wang LS (2017) A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta 164:121–127

    Article  CAS  Google Scholar 

  16. Ma Y, Shen XL, Zeng Q, Wang LS (2017) MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I. Anal Biochem 520:9–15

    Article  CAS  Google Scholar 

  17. Liu Y, Liu J, Liu J, Gan W, Ye BC, Li YC (2017) Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres. Microchim Acta 184:1285–1294

    Article  CAS  Google Scholar 

  18. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22(6):474–1489

    Article  Google Scholar 

  19. Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF (2013) Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to myoglobin detection. Biosens Bioelectron 45:237–244

    Article  CAS  Google Scholar 

  20. Chen HJ, Zhang ZH, Luo LJ, Yao SZ (2012) Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin. Sensors Actuators B Chem 163:76–83

    Article  CAS  Google Scholar 

  21. Ramanaviciene A, Ramanavicius A (2004) Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens Bioelectron 20:1076–1082

    Article  CAS  Google Scholar 

  22. Lee MH, O’Hare D, Guo HZ, Yang CH, Lin HY (2016) Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s. J Mater Chem B 4:3782–3787

    Article  CAS  Google Scholar 

  23. Ouyang RZ, Lei JP, Ju HX, Xue YD (2007) A molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid. Adv Funct Mater 17:3223–3230

    Article  CAS  Google Scholar 

  24. Li YC, Liu J, Liu MH, Yu F, Zhang L, Tang H, Ye BC, Lai LF (2016) Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam. Electrochem Commun 64:42–45

    Article  CAS  Google Scholar 

  25. Erdőssy J, Horváth V, Yarman A, Scheller FW, Gyurcsányi RE (2016) Electrosynthesized molecularly imprinted polymers for protein recognition. TrAC Trends Anal Chem 79:179–190

    Article  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Rochefort A, Wuest JD (2009) Interaction of substituted aromatic compounds with graphene. Langmuir 25:210–215

    Article  Google Scholar 

  27. Liu K, Zhang JJ, Wang C, Zhu JJ (2011) Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens Bioelectron 26:3627–3632

    Article  CAS  Google Scholar 

  28. Liu N, Ma Z (2014) Au–ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosens Bioelectron 51:184–190

    Article  CAS  Google Scholar 

  29. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  30. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  31. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 30:6666–6669

    Google Scholar 

  32. Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34:125–131

    Article  CAS  Google Scholar 

  33. Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  34. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184(4):969–979

    Article  CAS  Google Scholar 

  35. Chartarrayawadee W, Moulton SE, Li D, Too CO, Wallace GG (2012) Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochim Acta 60:213–223

    Article  CAS  Google Scholar 

  36. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266

    Article  CAS  Google Scholar 

  37. Shanmugharaj AM, Ryu SH (2012) Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process. Electrochim Acta 74:207–214

    Article  CAS  Google Scholar 

  38. Wang XD, Dong J, Ming HM, Ai SY (2013) Sensing of glycoprotein via a biomimetic sensor based on molecularly imprintedpolymers and graphene−au nanoparticles. Analyst 138:1219–1225

    Article  CAS  Google Scholar 

  39. Lai GS, Yan F, Wu J, Leng C, Ju HX (2011) Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem 83:2726–2732

    Article  CAS  Google Scholar 

  40. Liang RP, Wang ZX, Zhang L, Qiu JD (2012) A label-free amperometric immunosensor for alpha-fetoprotein determination based on highly ordered porous multi-walled carbon nanotubes/silica nanoparticles array platform. Sensors Actuators B Chem 166−167:569–575

    Article  Google Scholar 

  41. Wang D, Gan N, Zhang HR, Li TH, Qiao L, Cao YT, Su XR, Jiang S (2015) Simultaneous electrochemical immunoassay using graphene−au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes. Biosens Bioelectron 65:78–82

    Article  CAS  Google Scholar 

  42. Bai HP, Wang CQ, Chen J, Peng J, Cao Q (2015) A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens Bioelectron 64:352–358

    Article  CAS  Google Scholar 

  43. Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL (2016) Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195

    Article  CAS  Google Scholar 

  44. Patra S, Roy E, Madhuri R, Sharma PK (2015) Nano-iniferter based imprinted sensor for ultra trace level detection of prostate-specific antigen in both men and women. Biosens Bioelectron 66:1–10

    Article  CAS  Google Scholar 

  45. Rebelo TSCR, Noronha JP, Galésio M, Costa-Rodrigues J (2016) Testing the variability of PSA expression by different human prostate cancer cell lines by means of a new potentiometric device employing molecularly antibody assembled on graphene surface. Mater Sci Eng C 59:1069–1078

    Article  CAS  Google Scholar 

  46. Biniaz Z, Mostafavi A, Shamspur T, Torkzadeh-Mahani M, Mohamadi M (2017) Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal antibody conjugated to thionine and horseradish peroxidase. Microchim Acta 184:2731–2738

    Article  CAS  Google Scholar 

  47. Jiao L, Mu ZG, Miao LY, Du WW, Wei Q (2017) Li H (2017) enhanced amperometric immunoassay for the prostate specific antigen using Pt-cu hierarchical trigonal bipyramid nanoframes as a label. Microchim Acta 184:423–429

    Article  CAS  Google Scholar 

  48. Sun XC, Lei C, Guo L, Zhou Y (2016) Sandwich immunoassay for the prostate specific antigen using a micro-fluxgate and magnetic bead labels. Microchim Acta 183:2385–2393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21475046, 21427809, 21645004). We also acknowledge the Fundamental Research Funds for the Central Universities (No. 2015ZP028 and 2017MS094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Shi Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 10412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Shen, XL., Zeng, Q. et al. A glassy carbon electrode modified with graphene nanoplatelets, gold nanoparticles and chitosan, and coated with a molecularly imprinted polymer for highly sensitive determination of prostate specific antigen. Microchim Acta 184, 4469–4476 (2017). https://doi.org/10.1007/s00604-017-2458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2458-y

Keywords

Navigation