Skip to main content
Log in

Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescence aptasensor is described that combines target-cycling strand displacement amplification (TCSDA) and synthesis of copper nanoclusters (CuNCs) templated with double-stranded DNA (dsDNA). Specifically, the detection scheme was applied to the determination of adenosine-5′-triphosphate (ATP) via target-induced structure switching design. The binding of an aptamer hairpin probe (AP) to ATP induces a structural switch from a hairpin shape to an open conformation. This facilitates hybridization with a primer and triggers a TCSDA reaction. This amplification step produces a large quantity of dsDNA that can directly act as a template for the synthesis of fluorescent CuNCs, thereby producing a strong red fluorescence (with excitation/emission maxima at 340/598 nm) that can be used to quantify ATP. The assay has a dynamic range that extends over 4 decades (from 0.01 nM to 100 nM) and a 5 pM detection limit. Conceivably, this detection scheme is applicable to numerous other analytes for which suitable aptamers are available.

Schematic of an ATP assay (with a 5 pM detection limit) that is taking advantages of (a) target-cycling strand displacement amplification, and (b) of red fluorescent copper nanoclusters. KF polymerase: Klenow fragment of polymerase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1):132–157

    Article  CAS  Google Scholar 

  2. Chen LY, Wang CW, Yuan Z, Chang HT (2014) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87(1):216–229

    Article  Google Scholar 

  3. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: from synthesis to applications. Trends Anal Chem 58:90–98

    Article  CAS  Google Scholar 

  4. Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44(23):8636–8663

    Article  CAS  Google Scholar 

  5. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889

    Article  CAS  Google Scholar 

  6. Wen Q, Gu Y, Tang LJ, Yu RQ, Jiang JH (2013) Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal Chem 85(24):11681–11685

    Article  CAS  Google Scholar 

  7. Zhang L, Zhu J, Guo S, Li T, Li J, Wang E (2013) Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J Am Chem Soc 135(7):2403–2406

    Article  CAS  Google Scholar 

  8. Chen T, Hu Y, Cen Y, Chu X, Lu Y (2013) A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc 135(31):11595–11602

    Article  CAS  Google Scholar 

  9. Francos MAE, Badía-Laíño R, Díaz-García ME (2015) Fluorescence sensitization of gold-glutathione nanoclusters by aqueous solutions of sodium and potassium ions. Microchim Acta 182(9):1591–1598

    Article  CAS  Google Scholar 

  10. Tang T, Jiang O, Hu L, Guo L, Yang M, Chen X (2016) Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum. Microchim Acta 183(10):2831–2836

    Article  CAS  Google Scholar 

  11. Liu J (2014) DNA-stabilized, fluorescent, metal nanoclusters for biosnsor development. Trends Anal Chem 58:99–111

    Article  CAS  Google Scholar 

  12. Park KS, Park HG (2014) Technological applications arising from the interactions of DNA bases with metal ions. Curr Opin Biotechnol 28:17–24

    Article  CAS  Google Scholar 

  13. Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Strongly emissive individual DNA-encapsulated ag nanoclusters as single-molecule fluorophores. P Natl Acad Sci 104(31):12616–12621

    Article  CAS  Google Scholar 

  14. Zhou L, Lu P, Zhu M, Li B, Yang P, Cai J (2016) Silver nanocluster based sensitivity amplification of a quartz crystal microbalance gene sensor. Microchim Acta 183(2):881–887

    Article  CAS  Google Scholar 

  15. Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S (2012) Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull 45(2):69–74

    Article  Google Scholar 

  16. Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283

    Article  CAS  Google Scholar 

  17. Liu G, Shao Y, Wu F, Xu S, Peng J, Liu L (2013) DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnol 24:015503

    Article  Google Scholar 

  18. Yuan Z, Cai N, Du Y, He Y, Yeung ES (2014) Sensitive and selective detection of copper ions with highly stable Polyethyleneimine-protected silver nanoclusters. Anal Chem 86:419–426

    Article  CAS  Google Scholar 

  19. Yuan Z, Chen YC, Li HW, Chang HT (2014) Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun 50:9800–9815

    Article  CAS  Google Scholar 

  20. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed 49(33):5665–5667

    Article  CAS  Google Scholar 

  21. Hu X, Liu T, Zhuang Y, Wang W, Li Y, Fan W, Huang Y (2016) Recent advances in the analytical applications of copper nanoclusters. Trends Anal Chem 77:66–75

    Article  CAS  Google Scholar 

  22. Wang L, Shi F, Li Y, Su X (2016) An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted cu nanoclusters. Sensor Actuat B-Chem 222:945–951

    Article  CAS  Google Scholar 

  23. Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B (2017) Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template. Microchim Acta 184:773–779

    Article  CAS  Google Scholar 

  24. Sheng F, Zhang X, Wang G (2017) Novel ultrasensitive homogeneous electrochemical aptasensor based on dsDNA-templated copper nanoparticles for the detection of ractopamine. J Mater Chem B 5:53–61

    Article  CAS  Google Scholar 

  25. Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115(22):12491–12545

    Article  CAS  Google Scholar 

  26. Duan R, Lou X, Xia F (2016) The development of nanostructure assisted isothermal amplification in biosensors. Chem Soc Rev 45(6):1738–1749

    Article  CAS  Google Scholar 

  27. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111(6):3736–3827

    Article  CAS  Google Scholar 

  28. Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112(4):2528–2556

    Article  CAS  Google Scholar 

  29. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer Nano-flares for molecular detection in living cells. Nano Lett 9(9):3258–3261

    Article  CAS  Google Scholar 

  30. Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery. Nat Commun 5:3364

    Article  Google Scholar 

  31. Ye S, Wu Y, Zhai X, Tang B (2015) Asymmetric signal amplification for simultaneous SERS detection of multiple cancer markers with significantly different levels. Anal Chem 87(16):8242–8249

    Article  CAS  Google Scholar 

  32. Li X, Peng Y, Chai Y, Yuan R, Xian Y (2016) A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun 52:3673–3676

    Article  CAS  Google Scholar 

  33. Wang H, Peng P, Liu S, Li T (2016) Thioflavin T behaves as an efficient fluorescent ligand for label-free ATP aptasensor. Anal Bioanal Chem 408(28):7927–7934

    Article  CAS  Google Scholar 

  34. Tang D, Hou L (2016) Aptasensor for ATP based on analyte-induced dissociation of ferrocene-aptamer conjugates from manganese dioxide nanosheets on a screen-printed carbon electrode. Microchim Acta 183(10):2705–2711

    Article  CAS  Google Scholar 

  35. Ding X, Wang Y, Cheng W, Mo F, Sang Y, Xu L, Ding S (2017) Aptamer based electrochemical adenosine triphosphate assay based on a target-induced dendritic DNA nanoassembly. Microchim Acta 184(2):431–438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Basic Research Program (2011CB911000), National Natural Science Foundation of China (21527810, 21575036, 21190041, 21521063, 21505041) and Graduate Student Research Innovation Project of Hunan Province (CX2016B118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Jia Liu or Jian-Hui Jiang.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM., Liu, JW., Duan, LY. et al. Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchim Acta 184, 4183–4188 (2017). https://doi.org/10.1007/s00604-017-2337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2337-6

Keywords

Navigation