Skip to main content
Log in

Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a carbon nanotube (CNT) fiber microelectrode coated with palladium nanoparticles (PdNPs) and enabling electrochemical sensing of hydrogen peroxide (H2O2). The synergistic effects of the CNT fibers (good mechanical strength and large surface area) and of the PdNPs (high electrocatalytic activity) result in a microelectrode for H2O2 that exhibits a 2-s response time, a detection limit as low as 2 μM, a sensitivity of 2.75 A cm−2 M−1, and a linear response range from 2 μM to 1.3 mM (R = 0.9994). The sensor is also selective and not interfered by potentially competing species in biological fluids, thus representing an inexpensive but highly sensitive and selective microsensor for H2O2.

Images ofthe palladium nanoparticle-coated carbon nanotube (PdNP/CNT) fiber microelectrode (left) and its amperometric response to hydrogen peroxide (H2O2) with different concentrations (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  CAS  Google Scholar 

  2. Schäferling M, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1–18

    Article  Google Scholar 

  3. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  CAS  Google Scholar 

  4. Chen S, Yuan R, Chai Y, Hu F (2012) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  Google Scholar 

  5. Liu Y, Wang D, Xu L, Hou H, You T (2011) A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens Bioelectron 26:4585–4590

    Article  CAS  Google Scholar 

  6. Xu S, Zhang X, Wan T, Zhang C (2010) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchim Acta 172:199–205

    Article  Google Scholar 

  7. Li CM, Hu WH (2013) Electroanalysis in micro- and nano-scales. J Electroanal Chem 688:20–31

    Article  CAS  Google Scholar 

  8. Li CM, Zang JF, Zhan DP, Chen W, Sun CQ, Teo AL, Chua YT, Lee VS, Moochhala SM (2006) Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanalysis 18:713–718

    Article  Google Scholar 

  9. Brown RJC, Brett DJL (2009) Microelectrode voltammetry as a high accuracy method for determination of diffusion coefficients. Microchim Acta 164:337–344

    Article  CAS  Google Scholar 

  10. Evans SAG, Elliott JM, Andrews LM, Bartlett PN, Doyle PJ, Denuault G (2002) Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal Chem 74:1322–1326

    Article  CAS  Google Scholar 

  11. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, Sombers LA (2010) Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem 82:5205–5210

    Article  CAS  Google Scholar 

  12. Wen H, Nallathambi V, Chakraborty D, Barton SC (2011) Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim Acta 175:283–289

    Article  CAS  Google Scholar 

  13. Du FY, Fung YS (2010) Development of CE-dual opposite carbon-fiber micro-disk electrode detection for peak purity assessment of polyphenols in red wine. Electrophoresis 31:2192–2199

    Article  CAS  Google Scholar 

  14. Mattusch J, Welsch T, Werner G (1992) HPLC-Electrochemical detector with a carbon-fiber working electrode. J Prakt Chem/Chem-Ztg 334:49–52

    Article  CAS  Google Scholar 

  15. Gołas J, Osteryoung J (1986) Mercury-coated carbon fiber microelectrodes: preparation and some properties. Anal Chim Acta 181:211–218

    Article  Google Scholar 

  16. Zhao X, Lu X, Tze WTY, Wang P (2010) A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes. Biosens Bioelectron 25:2343–2350

    Article  CAS  Google Scholar 

  17. Jiang K, Li Q, Fan S (2002) Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419:801

    Article  CAS  Google Scholar 

  18. Zhang X, Li Q, Holesinger TG, Arendt PN, Huang J, Kirven PD, Clapp TG, DePaula RF, Liao X, Zhao Y, Zheng L, Peterson DE, Zhu Y (2007) Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater 19:4198–4201

    Article  CAS  Google Scholar 

  19. Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:1358–1361

    Article  CAS  Google Scholar 

  20. Fan L, Feng C, Zhao W, Qian L, Wang Y, Li Y (2012) Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate. Nano letters 12:3668–3673

    Article  CAS  Google Scholar 

  21. Wang J, Deo RP, Poulin P, Mangey M (2003) Carbon nanotube fiber microelectrodes. J Am Chem Soc 125:14706–14707

    Article  CAS  Google Scholar 

  22. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Article  CAS  Google Scholar 

  23. Ye JS, Bai YC, Zhang WD (2009) Modification of vertically aligned carbon nanotube arrays with palladium nanoparticles for electrocatalytic reduction of oxygen. Microchim Acta 165:361–366

    Article  CAS  Google Scholar 

  24. Zhang WJ, Bai L, Lu LM, Chen Z (2012) A novel and simple approach for synthesis of palladium nanoparticles on carbon nanotubes for sensitive hydrogen peroxide detection. Colloids and surfaces. B, Biointerfaces 97:145–149

    Article  CAS  Google Scholar 

  25. Bo X, Bai J, Ju J, Guo L (2010) A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Anal Chim Acta 675:29–35

    Article  CAS  Google Scholar 

  26. Zheng L, Sun G, Zhan Z (2010) Tuning array morphology for high-strength carbon-nanotube fibers. Small 6:132–137

    Article  CAS  Google Scholar 

  27. Dudin PV, Snowden ME, Macpherson JV, Unwin PR (2011) Electrochemistry at nanoscale electrodes: individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires. ACS Nano 5:10017–10025

    Article  CAS  Google Scholar 

  28. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS nano 2:1825–1832

    Article  CAS  Google Scholar 

  29. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A (2006) Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J Phys Chem B 110:13393–13398

    Article  CAS  Google Scholar 

  30. Nowall WB, Kuhr WG (1997) Detection of hydrogen peroxide and other molecules of biological importance at an electrocatalytic surface on a carbon fiber microelectrode. Electroanalysis 9:102–109

    Article  CAS  Google Scholar 

  31. Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal BioanalChem 382:12–21

    CAS  Google Scholar 

  32. Liu J, Zhou W, You T, Li F, Wang E, Dong S (1996) Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a palladium-modified microdisk array electrode. Anal Chem 68:3350–3353

    Article  CAS  Google Scholar 

  33. Bian X, Guo K, Liao L, Xiao J, Kong J, Ji C, Liu B (2012) Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta 99:256–261

    Article  CAS  Google Scholar 

  34. Chen T, Cai Z, Yang Z, Li L, Sun X, Huang T, Yu A, Kia HG, Peng H (2011) Nitrogen-doped carbon nanotube composite fiber with a core-sheath structure for novel electrodes. Adv Mater 23:4620–4625

    Article  CAS  Google Scholar 

  35. Lu H, Yu S, Fan Y, Yang C, Xu D (2012) Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloids Surf, B 101C:106–110

    Google Scholar 

  36. Zhang Y, Sun X, Zhu L, Shen H, Jia N (2011) Electrochemical sensing based on graphene oxide/prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245

    Article  CAS  Google Scholar 

  37. Yin J, Qi X, Yang L, Hao G, Li J, Zhong J (2011) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim Acta 56:3884–3889

    Article  CAS  Google Scholar 

  38. Pauliukaite R, Hočevar SB, Hutton EA, Ogorevc B (2008) Novel electrochemical microsensor for hydrogen peroxide based on iron-ruthenium hexacyanoferrate modified carbon fiber electrode. Electroanalysis 20:47–53

    Article  CAS  Google Scholar 

  39. Kang M, Lee Y, Jung H, Shim JH, Lee NS, Baik JM, Lee SC, Lee C, Kim MH (2012) Single carbon fiber decorated with RuO2 nanorods as a highly electrocatalytic sensing element. Anal Chem 84:9485–9491

    CAS  Google Scholar 

  40. Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups. J Am Chem Soc 131:13200–13201

    Article  CAS  Google Scholar 

  41. Yang P, Wei W, Tao C, Xie B, Chen X (2007) Nano-silver/multi-walled carbon nanotube composite films for hydrogen peroxide electroanalysis. Microchim Acta 162:51–56

    Article  Google Scholar 

  42. Wang Y, Huang J, Zhang C, Wei J, Zhou X (1998) Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles Co-modified carbon fiber microelectrode. Electroanalysis 10:776–778

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by grants from the Agency for Science, Technology and Research (A*STAR), Center for Advanced Bionanosystems, Nanyang Technological University, Singapore and Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianxi Zheng or Chang Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Sun, G., Jiang, C. et al. Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Microchim Acta 181, 63–70 (2014). https://doi.org/10.1007/s00604-013-1066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1066-8

Keywords

Navigation