Skip to main content
Log in

Two-Photon Exchange: Future Experimental Prospects

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The proton elastic form factor ratio is accessible in unpolarized Rosenbluth-type experiments as well as experiments which make use of polarization degrees of freedom. The extracted values show a distinct discrepancy, growing with \(Q^2\). Three recent experiments tested the proposed explanation, two-photon exchange, by measuring the positron–proton to electron–proton cross section ratio. In the results, a hard two-photon exchange effect at the couple-of-percent level is visible, significantly different from theoretical calculation. Theory at larger momentum transfer remains untested. This paper discusses the possibilities for future measurements at larger momentum transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Litt et al., Phys. Lett. B 31, 40 (1970). https://doi.org/10.1016/0370-2693(70)90015-8

    Article  ADS  Google Scholar 

  2. W. Bartel et al., Nucl. Phys. B 58, 429 (1973). https://doi.org/10.1016/0550-3213(73)90594-4

    Article  ADS  Google Scholar 

  3. L. Andivahis et al., Phys. Rev. D 50, 5491 (1994). https://doi.org/10.1103/PhysRevD.50.5491

    Article  ADS  Google Scholar 

  4. R.C. Walker et al., Phys. Rev. D 49(11), 5671 (1994). https://doi.org/10.1103/PhysRevD.49.5671

    Article  ADS  Google Scholar 

  5. M.E. Christy et al., Phys. Rev. C 70(1), 015206 (2004). https://doi.org/10.1103/PhysRevC.70.015206

    Article  ADS  Google Scholar 

  6. I.A. Qattan et al., Phys. Rev. Lett. 94(14), 142301 (2005). https://doi.org/10.1103/PhysRevLett.94.142301

    Article  ADS  Google Scholar 

  7. O. Gayou et al., Phys. Rev. C 64(3), 038202 (2001). https://doi.org/10.1103/PhysRevC.64.038202

    Article  ADS  Google Scholar 

  8. V. Punjabi et al., Phys. Rev. C 71(5), 055202 (2005). https://doi.org/10.1103/PhysRevC.71.055202

    Article  ADS  Google Scholar 

  9. M.K. Jones et al., Phys. Rev. C 74, 035201 (2006). https://doi.org/10.1103/PhysRevC.74.035201

    Article  ADS  Google Scholar 

  10. A.J.R. Puckett et al., Phys. Rev. Lett. 104, 242301 (2010). https://doi.org/10.1103/PhysRevLett.104.242301

    Article  ADS  Google Scholar 

  11. M. Paolone et al., Phys. Rev. Lett. 105, 072001 (2010). https://doi.org/10.1103/PhysRevLett.105.072001

    Article  ADS  Google Scholar 

  12. A.J.R. Puckett et al., Phys. Rev. C 85, 045203 (2012)

    Article  ADS  Google Scholar 

  13. J.C. Bernauer et al., Phys. Rev. C 90, 015206 (2014). https://doi.org/10.1103/PhysRevC.90.015206.

    Article  ADS  Google Scholar 

  14. P.G. Blunden, W. Melnitchouk, J.A. Tjon, Phys. Rev. Lett. 91, 142304 (2003). https://doi.org/10.1103/PhysRevLett.91.142304

    Article  ADS  Google Scholar 

  15. P.A.M. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003). https://doi.org/10.1103/PhysRevLett.91.142303

    Article  ADS  Google Scholar 

  16. L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969). https://doi.org/10.1103/RevModPhys.41.205

    Article  ADS  Google Scholar 

  17. L.C. Maximon, J.A. Tjon, Phys. Rev. C 62, 054320 (2000). https://doi.org/10.1103/PhysRevC.62.054320

    Article  ADS  Google Scholar 

  18. P.G. Blunden, W. Melnitchouk, Phys. Rev. C 95(6), 065209 (2017). https://doi.org/10.1103/PhysRevC.95.065209

    Article  ADS  Google Scholar 

  19. A.V. Afanasev et al., Phys. Rev. D 72, 013008 (2005). https://doi.org/10.1103/PhysRevD.72.013008

    Article  ADS  Google Scholar 

  20. W.A. McKinley, H. Feshbach, Phys. Rev. 74, 1759 (1948). https://doi.org/10.1103/PhysRev.74.1759

    Article  ADS  Google Scholar 

  21. I.A. Rachek et al., Phys. Rev. Lett. 114(6), 062005 (2015). https://doi.org/10.1103/PhysRevLett.114.062005

    Article  ADS  Google Scholar 

  22. D. Adikaram et al., Phys. Rev. Lett. 114, 062003 (2015). https://doi.org/10.1103/PhysRevLett.114.062003

    Article  ADS  Google Scholar 

  23. B.S. Henderson et al., Phys. Rev. Lett. 118(9), 092501 (2017). https://doi.org/10.1103/PhysRevLett.118.092501

    Article  ADS  Google Scholar 

  24. J.C. Bernauer et al., Phys. Rev. C 90(1), 015206 (2014). https://doi.org/10.1103/PhysRevC.90.015206

    Article  ADS  Google Scholar 

  25. A. Afanasev et al., Prog. Part. Nucl. Phys. 95, 245 (2017). https://doi.org/10.1016/j.ppnp.2017.03.004

    Article  ADS  Google Scholar 

  26. E. Tomasi-Gustafsson, S. Pacetti, Few Body Syst. 59(5), 91 (2018). https://doi.org/10.1007/s00601-018-1416-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Nuclear Physics of the U.S. Department of Energy, Grant No. DE-FG02-94ER40818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Bernauer.

Additional information

This article belongs to the Topical Collection “NSTAR 2017—The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernauer, J.C. Two-Photon Exchange: Future Experimental Prospects. Few-Body Syst 59, 116 (2018). https://doi.org/10.1007/s00601-018-1439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1439-y

Navigation