Skip to main content

Advertisement

Log in

Comprehensive assessment of biventricular myocardial function by two-dimensional speckle tracking echocardiography in infants of gestational diabetic mothers

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

No previous research provided a complete biventricular and multidirectional left ventricular (LV) functional assessment by two-dimensional (2D) speckle tracking echocardiography (STE) in infants of gestational diabetic mothers (IGDM)

Methods

A total of 30 consecutive IGDM and 30 infants of healthy mothers were examined between March 2021 and July 2021. Both groups of infants underwent evaluation by neonatologist and 2D transthoracic echocardiography (TTE) implemented with 2D-STE quantification of LV-global longitudinal strain (GLS), LV-global circumferential strain (GCS), LV-global radial strain (GRS) and right ventricular (RV)-GLS, within 3 days of life and at 40 days after birth. Predictors of persistent subclinical myocardial dysfunction, defined as a LVGLS less negative than -20% at 40-day follow-up, in IGDM population, were determined.

Results

At 2.2 ± 1.3 days after birth, LV-GLS (− 17.2 ± 1.9 vs. − 23.9 ± 3.8%), LV-GCS (− 17.9 ± 2.7 vs. − 27.3 ± 3.4%), LV-GRS (25.6 ± 3.4 vs. 35.8 ± 3.6%) and RV-GLS (− 17.6 ± 3.6 vs. − 22.6 ± 3.8%) were significantly impaired in IGDM than controls (all p < 0.001). At 36.8 ± 5.2 days of life, LV-GLS was still impaired (less negative than -20%) in 26.6% of IGDM. Maternal third trimester body mass index (BMI) (OR 1.89, 95%CI 1.05–3.39) and third trimester glycosylated hemoglobin (HbA1C) (OR 1.59, 95%CI 1.08–2.19) were independently associated with persistent LV-GLS impairment in IGDM. Maternal BMI ≥ 30 Kg/m2 and HbA1C ≥ 38 mmol/mol showed the maximum of sensitivity and specificity for predicting persistent subclinical myocardial dysfunction in IGDM at 40 days of life.

Conclusions

IGDM have diffuse pattern of myocardial dysfunction during perinatal period. This dysfunction may be persistent up to 40 days of life in infants of GDM women with obesity and uncontrolled diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

AUC:

Area under the curve

BMI:

Body mass index

BSA:

Body surface area

CI:

Confidence interval

DBP:

Diastolic blood pressure

GCS:

Global circumferential strain

GDM:

Gestational diabetes mellitus

GLS:

Global longitudinal strain

GRS:

Global radial strain

HbA1C:

Glycosylated hemoglobin

ICC:

Intraclass correlation coefficient

IGDM:

Infants of gestational diabetic mothers

LV:

Left ventricular

LVEDD:

Left ventricular end-diastolic diameter

LVEF:

Left ventricular ejection fraction

LVOT:

Left ventricular outflow tract

MAP:

Mean arterial pressure

MAPSE:

Mitral annular plane systolic excursion

PW:

Posterior wall

ROC:

Receiver operating characteristics

RV:

Right ventricular

RWT:

Relative wall thickness

SBP:

Systolic blood pressure

SPAP:

Systolic pulmonary artery pressure

STE:

Speckle tracking echocardiography

SV:

Stroke volume

TAPSE:

Tricuspid annular plane systolic excursion

TTE:

Transthoracic echocardiography

References

  1. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH (2014) Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract 103:176–185

    Article  CAS  PubMed  Google Scholar 

  2. Zhu Y, Zhang C (2016) Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr Diab Rep 16:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ullmo S, Vial Y, Di Bernardo S et al (2007) Pathologic ventricular hypertrophy in the offspring of diabetic mothers: a retrospective study. Eur Heart J 28:1319–1325

    Article  CAS  PubMed  Google Scholar 

  4. Russell NE, Holloway P, Quinn S, Foley M, Kelehan P, McAuliffe FM (2008) Cardiomyopathy and cardiomegaly in stillborn infants of diabetic mothers. Pediatr Dev Pathol 11:10–14

    Article  PubMed  Google Scholar 

  5. Riskin A, Itzchaki O, Bader D, Iofe A, Toropine A, Riskin-Mashiah S (2020) Perinatal outcomes in infants of mothers with diabetes in pregnancy. Isr Med Assoc J 22:569–575

    PubMed  Google Scholar 

  6. Breatnach CR, Levy PT, James AT, Franklin O, El-Khuffash A (2016) Novel Echocardiography methods in the functional assessment of the newborn heart. Neonatology 110:248–260

    Article  PubMed  Google Scholar 

  7. Russell NE, Foley M, Kinsley BT, Firth RG, Coffey M, McAuliffe FM (2008) Effect of pregestational diabetes mellitus on fetal cardiac function and structure. Am J Obstet Gynecol 199:312.e1–7

    Article  CAS  Google Scholar 

  8. Garg S, Sharma P, Sharma D, Behera V, Durairaj M, Dhall A (2014) Use of fetal echocardiography for characterization of fetal cardiac structure in women with normal pregnancies and gestational diabetes mellitus. J Ultrasound Med 33:1365–1369

    Article  PubMed  Google Scholar 

  9. Pauliks LB (2015) The effect of pregestational diabetes on fetal heart function. Expert Rev Cardiovasc Ther 13:67–74

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Xu Y, Fu J, Huang L (2015) Evaluation of the regional ventricular systolic function by two-dimensional strain echocardiography in gestational diabetes mellitus (GDM) fetuses with good glycemic control. J Matern Fetal Neonatal Med 28:2150–2154

    Article  PubMed  Google Scholar 

  11. Kulkarni A, Li L, Craft M et al (2017) Fetal myocardial deformation in maternal diabetes mellitus and obesity. Ultrasound Obstet Gynecol 49:630–636

    Article  CAS  PubMed  Google Scholar 

  12. Mace S, Hirschfield SS, Riggs T, Fanaroff AA, Merkatz IR (1979) Echocardiographic abnormalities in infants of diabetic mothers. J Pediatr 95:1013–1019

    Article  CAS  PubMed  Google Scholar 

  13. Kozák-Bárány A, Jokinen E, Kero P, Tuominen J, Rönnemaa T, Välimäki I (2004) Impaired left ventricular diastolic function in newborn infants of mothers with pregestational or gestational diabetes with good glycemic control. Early Hum Dev 77:13–22

    Article  PubMed  CAS  Google Scholar 

  14. Al-Biltagi M, Tolba OA, Rowisha MA, Ael-S M, Elewa MA (2015) Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr Cardiol 36:445–453

    Article  PubMed  Google Scholar 

  15. Cade WT, Levy PT, Tinius RA et al (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bogo MA, Pabis JS, Bonchoski AB et al (2021) Cardiomyopathy and cardiac function in fetuses and newborns of diabetic mothers. J Pediatr (Rio J) 97:520–524

    Article  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the european association of cardiovascular imaging. J Am Soc Echocardiogr 28:1-39.e14

    Article  PubMed  Google Scholar 

  18. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  19. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  20. Koestenberger M, Nagel B, Ravekes W et al (2015) Longitudinal systolic left ventricular function in preterm and term neonates: reference values of the mitral annular plane systolic excursion (MAPSE) and calculation of z-scores. Pediatr Cardiol 36:20–26

    Article  PubMed  Google Scholar 

  21. Koestenberger M, Nagel B, Ravekes W et al (2011) Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of Z-score values. Neonatology 100:85–92

    Article  PubMed  Google Scholar 

  22. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  23. Zheng L, Sun Z, Li J, Zhang R et al (2008) Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of China. Stroke 39:1932–1937

    Article  PubMed  Google Scholar 

  24. Dubin J, Wallerson DC, Cody RJ, Devereux RB (1990) Comparative accuracy of Doppler echocardiographic methods for clinical stroke volume determination. Am Heart J 120:116–123

    Article  CAS  PubMed  Google Scholar 

  25. El-Khuffash A, Schubert U, Levy PT, Nestaas E, de Boode WP (2018) Deformation imaging and rotational mechanics in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Res 84(1):30–45

    Article  PubMed  PubMed Central  Google Scholar 

  26. Muraru D, Onciul S, Peluso D et al (2016) Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 9:e003866

    Article  PubMed  Google Scholar 

  27. Levy PT, Machefsky A, Sanchez AA et al (2016) Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 29:209-225.e6

    Article  PubMed  Google Scholar 

  28. Levy PT, Mejia AAS, Machefsky A, Fowler S, Holland MR, Singh GK (2014) Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 27(5):549–560

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cooper MJ, Enderlein MA, Tarnoff H, Rogé CL (1992) Asymmetric septal hypertrophy in infants of diabetic mothers. fetal echocardiography and the impact of maternal diabetic control. Am J Dis Child 146:226–229

    Article  CAS  PubMed  Google Scholar 

  30. Knopp RH, Magee MS, Walden CE, Bonet B, Benedetti TJ (1992) Prediction of infant birth weight by GDM screening tests. Importance Plasma Triglyceride Diabetes Care 15:1605–1613

    Article  CAS  PubMed  Google Scholar 

  31. Son GH, Kwon JY, Kim YH, Park YW (2010) Maternal serum triglycerides as predictive factors for large-for-gestational age newborns in women with gestational diabetes mellitus. Acta Obstet Gynecol Scand 89:700–704

    Article  CAS  PubMed  Google Scholar 

  32. Ece I, Uner A, Balli S, Kibar AE, Oflaz MB, Kurdoglu M (2014) The effects of pre-pregnancy obesity on fetal cardiac functions. Pediatr Cardiol 35:838–843

    Article  PubMed  Google Scholar 

  33. Paauw ND, Stegeman R, de Vroede MAMJ, Termote JUM, Freund MW, Breur JMPJ (2020) Neonatal cardiac hypertrophy: the role of hyperinsulinism-a review of literature. Eur J Pediatr 179:39–50

    Article  CAS  PubMed  Google Scholar 

  34. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circulation 105:1861–1870

    Article  CAS  PubMed  Google Scholar 

  35. Schulze PC, Drosatos K, Goldberg IJ (2016) Lipid use and misuse by the heart. Circ Res 118:1736–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rösen P, Du X, Tschöpe D (1998) Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention by alpha-tocopherol? Mol Cell Biochem 188:103–111

    Article  PubMed  Google Scholar 

  37. Tadic M, Ivanovic B, Cuspidi C (2013) Metabolic syndrome and right ventricle: an updated review. Eur J Intern Med 24:608–616

    Article  PubMed  Google Scholar 

  38. Tadic M, Cuspidi C, Vukomanovic V et al (2016) The influence of type 2 diabetes and arterial hypertension on right ventricular layer-specific mechanics. Acta Diabetol 53:791–797

    Article  CAS  PubMed  Google Scholar 

  39. Colan SD, Lipshultz SE, Lowe AM et al (2007) Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the pediatric cardiomyopathy registry. Circulation 115:773–781

    Article  PubMed  Google Scholar 

  40. Valenzuela-Alcaraz B, Serafini A, Sepulveda-Martínez A et al (2019) Postnatal persistence of fetal cardiovascular remodelling associated with assisted reproductive technologies: a cohort study. BJOG 126:291–298

    Article  CAS  PubMed  Google Scholar 

  41. Sonaglioni A, Barlocci E, Adda G et al (2022) The impact of short-term hyperglycemia and obesity on biventricular and biatrial myocardial function assessed by speckle tracking echocardiography in a population of women with gestational diabetes mellitus. Nutr Metab Cardiovasc Dis 32:456–468

    Article  CAS  PubMed  Google Scholar 

  42. Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16:1–11

    Article  CAS  PubMed  Google Scholar 

  43. Sonaglioni A, Nicolosi GL, Granato A, Lombardo M, Anzà C, Ambrosio G (2021) Reduced myocardial strain parameters in subjects with pectus excavatum: Impaired myocardial function or methodological limitations due to chest deformity? Semin Thorac Cardiovasc Surg 33:251–262

    Article  PubMed  Google Scholar 

  44. Sonaglioni A, Nicolosi GL, Lombardo M, Gensini GF, Ambrosio G (2021) Influence of chest conformation on myocardial strain parameters in healthy subjects with mitral valve prolapse. Int J Cardiovasc Imaging 37:1009–1022

    Article  PubMed  Google Scholar 

  45. Sonaglioni A, Esposito V, Caruso C et al (2021) Chest conformation spuriously influences strain parameters of myocardial contractile function in healthy pregnant women. J Cardiovasc Med (Hagerstown) 22:767–779

    Article  CAS  Google Scholar 

  46. Sonaglioni A, Nicolosi GL, Braga M, Villa MC, Migliori C, Lombardo M (2021) Does chest wall conformation influence myocardial strain parameters in infants with pectus excavatum? J Clin Ultrasound 49:918–928

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

"This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica".

Author information

Authors and Affiliations

Authors

Contributions

Andrea Sonaglioni contributed to conceptualization; data curation; investigation; methodology; software; analysis; writing—original draft. Marta Braga helped in conceptualization; data curation; investigation; methodology; writing—original draft. Maria Cristina Villa contributed to conceptualization; data curation; investigation; methodology; writing—original draft. Anna Ferrulli helped in conceptualization; supervision; validation; writing—review and editing. Gian Luigi Nicolosi contributed to conceptualization; supervision; validation; writing—review and editing. Michele Lombardo, Claudio Migliori and Livio Luzi helped in conceptualization; supervision; validation; writing—review and editing.

Corresponding author

Correspondence to Andrea Sonaglioni.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication. Andrea Sonaglioni declares that he has no conflict of interest. Marta Braga declares that she has no conflict of interest. Maria Cristina Villa declares that she has no conflict of interest. Anna Ferrulli declares that she has no conflict of interest. Gian Luigi Nicolosi declares that he has no conflict of interest. Michele Lombardo declares that he has no conflict of interest. Claudio Migliori declares that he has no conflicts of interest. Livio Luzi declares that he has no conflicts of interest.

Ethical approval

All procedures performed in the present study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from parents of each infant included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Pregnancy and Diabetes, managed by Antonio Secchi and Marina Scavini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Braga, M., Villa, M.C. et al. Comprehensive assessment of biventricular myocardial function by two-dimensional speckle tracking echocardiography in infants of gestational diabetic mothers. Acta Diabetol 59, 1145–1156 (2022). https://doi.org/10.1007/s00592-022-01906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01906-y

Keywords

Navigation