Skip to main content

Advertisement

Log in

The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

This study assessed short-term memory and biochemical indicators with the levels of ghrelin, leptin, and cortisol between cognitive impairment and normal older adults with or without diabetes.

Methods

We enrolled 286 older adults (aged 65–85 years) with or without diabetes from the local community. Short-term memory was assessed using pictures of common objects; cognitive functioning was assessed using the Mini–Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). The physiological indexes assessed were plasma levels of fasting ghrelin and leptin, ghrelin level at 2_h after breakfast, 24-h urinary cortisol value, body mass index, and plasma cortisol levels at 8:00 a.m., 4:00 p.m., and 12:00 p.m.

Results

In both non-diabetic and diabetic subjects, short-term memory was significantly lower in the impaired cognition group (5.99 ± 2.90 in non-diabetic subjects and 4.71 ± 2.14 in diabetic subjects) than in the normal cognition group (8.14 ± 2.23 in non-diabetic subjects and 7.82 ± 3.37 in diabetic subjects). Baseline ghrelin level was significantly lower in the impaired cognition group (9.07 ± 1.13 ng/mL in non-diabetic subjects and 7.76 ± 1.34 ng/mL in diabetic subjects) than in the normal cognition group (10.94 ± 1.53 ng/mL in non-diabetic subjects and 9.93 ± 1.76 ng/mL in diabetic subjects); plasma cortisol levels at 8:00 a.m., 4:00 p.m., and 12:00 p.m. were significantly higher in the impaired cognition group than in the normal cognition group, while no significant difference was observed in plasma levels of fasting leptin between different groups.

Conclusions

Fasting plasma ghrelin and cortisol levels may be markers of cognitive decline and memory loss. It is possible that adjusting their levels may have a therapeutic effect, and this should be investigated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ning G, Bloomgarden Z (2013) Diabetes in China: prevalence, diagnosis, and control. J Diabetes 5(4):372

    Article  PubMed  Google Scholar 

  2. Bianchi L, Volpato S (2016) Muscle dysfunction in type 2 diabetes: a major threat to patient’s mobility and independence. Acta Diabetol 53(6):879–889

    Article  PubMed  CAS  Google Scholar 

  3. Sattar L, Renneboog B, Decaux G (2017) Hyperglycemia induces attention and gait deficits in diabetic mellitus patients. Acta Diabetol 54(10):953–959

    Article  PubMed  CAS  Google Scholar 

  4. Simó R, Ciudin A, Simó-Servat O, Hernández C (2017) Cognitive impairment and dementia: a new emerging complication of type 2 diabetes—The diabetologist’s perspective. Acta Diabetol 54(5):417–424

    Article  PubMed  Google Scholar 

  5. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74

    Article  PubMed  Google Scholar 

  6. Martins I, Gomes S, Costa RO et al (2013) Leptin and ghrelin prevent hippocampal dysfunction induced by Aβ oligomers. Neuroscience 41:41–51

    Article  CAS  Google Scholar 

  7. Diano S, Farr SA, Benoit SC et al (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9:381–388

    Article  PubMed  CAS  Google Scholar 

  8. Oomura Y, Hori N, Shiraishi T et al (2006) Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides 27:2738–2749

    Article  PubMed  CAS  Google Scholar 

  9. McNay EC (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr Opin Pharmacol 7:628–632

    Article  PubMed  CAS  Google Scholar 

  10. Signore AP, Zhang F, Weng Z et al (2008) Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. J Neurochem 106:1977–1990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    Article  PubMed  CAS  Google Scholar 

  12. Castañeda TR, Tong J, Datta R et al (2010) Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol 31:44–60

    Article  PubMed  CAS  Google Scholar 

  13. Beheshti S, Shahrokhi S (2015) Blocking the ghrelin receptor type 1a in the rat brain impairs memory encoding. Neuropeptides 52:97–102

    Article  PubMed  CAS  Google Scholar 

  14. Zhu Q, Xiao K, Yu M et al (2013) Ghrelin but not nesfatin-1 affects certain forms of learning and memory in both rats and mice. Brain Res 1541:42–51

    Article  PubMed  CAS  Google Scholar 

  15. Babri S, Amani M, Mohaddes G et al (2013) Effects of intrahippocampal injection of ghrelin on spatial memory in PTZ-induced seizures in male rats. Neuropeptides 47:355–360

    Article  PubMed  CAS  Google Scholar 

  16. Goshadrou F, Kermani M, Ronaghi A et al (2013) The effect of ghrelin on MK-801 induced memory impairment in rats. Peptides 44:60–65

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Ni J, Dong J et al (2013) Ghrelin increases hippocampal recombination activating gene 1 expression and spatial memory performance in mice. NeuroReport 24:712–717

    Article  PubMed  CAS  Google Scholar 

  18. Gomes S, Martins I, Fonseca ACRG et al (2014) Protective effect of leptin and ghrelin against toxicity induced by amyloid-β oligomers in a hypothalamic cell line. J Neuroendocrinol 26:176–185

    Article  PubMed  CAS  Google Scholar 

  19. Bayliss JA, Andrews ZB (2013) Ghrelin is neuroprotective in Parkinson’s disease: molecular mechanisms of metabolic neuroprotection. Ther Adv Endocrinol Metab 4:25–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dhurandhar E, Allison D, Groen T et al (2013) Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model. PLoS ONE 8:2–9

    Article  CAS  Google Scholar 

  21. Kunath N, van Groen T, Allison DB et al (2015) Ghrelin agonist does not foster insulin resistance but improves cognition in an Alzheimer’s disease mouse model. Sci Rep 5:11452

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kunath N, Dresler M (2014) Ghrelin and memory. In: Portelli J, Smolders I (eds) Central functions of the ghrelin receptor. Springer, New York, pp 167–175

    Google Scholar 

  23. Steiger A, Dresler M, Schüssler P et al (2011) Ghrelin in mental health, sleep, memory. Mol Cell Endocrinol 340:88–96

    Article  PubMed  CAS  Google Scholar 

  24. Spitznagel MB, Benitez A, Updegraff J et al (2010) Serum ghrelin is inversely associated with cognitive function in a sample of non-demented elderly. Psychiatr Clin Neurosci 64:608–611

    Article  CAS  Google Scholar 

  25. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34

    Article  PubMed  CAS  Google Scholar 

  26. Jéquier E (2002) Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci 967:379–388

    Article  PubMed  Google Scholar 

  27. Harvey J (2010) Leptin: the missing link in Alzheimer disease? Clin Chem 56:696–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fewlass DC, Noboa K, Pi-Sunyer FX et al (2004) Obesity-related leptin regulates Alzheimers Aβ. FASEB J 18:1870–1878

    Article  PubMed  CAS  Google Scholar 

  29. Tezapsidis N, Johnston JM, Smith MA et al (2009) Leptin: a novel therapeutic strategy for Alzheimer’ s disease. J Alzheimers Dis 16:731–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gecici O, Kuloglu M, Atmaca M et al (2005) High serum leptin levels in depressive disorders with atypical features. Psychiatry Clin Neurosci 59:736–738

    Article  PubMed  CAS  Google Scholar 

  31. Antonijevic IA, Murck H, Frieboes RM et al (1998) Elevated nocturnal profiles of serum leptin in patients with depression. J Psychiatr Res 32:403–410

    Article  PubMed  CAS  Google Scholar 

  32. Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16(9):606–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Guey-Mei J, Tsung-Tsair Y, Chun-Lan C (2006) Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. J Affect Disord 90:21–27

    Article  CAS  Google Scholar 

  34. Deuschle M, Blum WF, Englaro P et al (1996) Plasma leptin in depressed patients and healthy controls. Horm Metab Res 28(714):7 [PubMed: 9013749]

    Google Scholar 

  35. Morris AA, Ahmed Y, Stoyanova N et al (2012) The association between depression and leptin is mediated by adiposity. Psychosom Med 74(5):483–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Milaneschi Y, Simonsick EM, Vogelzangs N et al (2012) Leptin, abdominal obesity, and onset of depression in older men and women. J Clin Psychiatry 73:1205–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Milaneschi Y, Sutin AR, Terracciano A et al (2014) The association between leptin and depressive symptoms is modulated by abdominal adiposity. Psychoneuroendocrinology 42:1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Spencer SJ, Emmerzaal TL, Kozicz T et al (2015) Ghrelin’s role in the hypothalamic-pituitary-adrenal axis stress response: implications for mood disorders. Biol Psychiatry 78:19–27

    Article  PubMed  CAS  Google Scholar 

  39. Lara VP, Caramelli P, Teixeira AL et al (2013) High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia. Clin Chim Acta 423:18–22

    Article  PubMed  CAS  Google Scholar 

  40. Karlamangla AS, Singer BH, Chodosh J et al (2005) Urinary cortisol excretion as a predictor of incident cognitive impairment. Neurobiol Aging 26(Suppl1):S80–S84

    Article  CAS  Google Scholar 

  41. Lupien SJ, Fiocco A, Wan N et al (2005) Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 30:225–242

    Article  PubMed  CAS  Google Scholar 

  42. Folstein MF, Folstein SE, McHugh PR (1975) Mini-Mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  43. Kathol RG, Jaeckel RS, Lopez JF et al (1989) Pathophysiology of HPA axis abnormalities in patients with major depression: an update. Am J Psychiatry 146:311–317

    Article  PubMed  CAS  Google Scholar 

  44. Katzman R, Zhang MY, Ouang YQ et al (1988) A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41(10):971–978

    Article  PubMed  CAS  Google Scholar 

  45. Wang ZY, Zhang MT (1989) Application of simple intelligent state checking (MMSE) in Chinese version. Shanghai Psychiatric Med 7(3):108–111 (In Chinese)

    Google Scholar 

  46. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V et al (2005) The Montreal Cognitive Assessment, MoCA: brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699

    Article  PubMed  Google Scholar 

  47. Wang MQ, Ren MS (2012) Value of Montreal cognitive assessment in identifying ischemic stroke patients. Chin J Clin Neurosci 20(2):199–204

    CAS  Google Scholar 

  48. Short Term Memory Test—Pictures. http://faculty.washington.edu/chudler/puzmatch.html. Accessed 1 Dec 2014

  49. Aziz MA, Sharaby MA (1993) Collinearity as a problem in predicting body weight from body dimensions of Najdi sheep in Saudi Arabia. Small Rumin Res 12:117–124

    Article  Google Scholar 

  50. Yakubu A, Fakuade OF, Faith EA, Musa-Azara IS, Ogunwole OA (2013) Determination of prediction equations to estimate body condition score from body size and testicular traits of yankasa rams. J Indonesian Trop Anim 38(2):79–85

    Google Scholar 

  51. Stoyanova II (2014) Ghrelin: a link between aging, metabolism and neurodegenerative disorders. Neurobiol Dis 72:72–83

    Article  PubMed  CAS  Google Scholar 

  52. Kunath N, Muller NCJ, Tonon M et al (2016) Ghrelin modulates encoding-related brain function without enhancing memory formation in humans. NeuroImage 142:465–473

    Article  PubMed  CAS  Google Scholar 

  53. Wittekind DA, Kluge M (2015) Ghrelin in psychiatric disorders-A review. Psychoneuroendocrinology 52:176–194

    Article  PubMed  CAS  Google Scholar 

  54. Vasiliadis HM, Forget H, Préville M (2013) The association between self-reported daily hassles and cortisol levels in depression and anxiety in community living older adults. Int J Geriatr Psychiatry 28:991–997

    Article  PubMed  Google Scholar 

  55. Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (second of two parts). N Engl J Med 319:413–420

    Article  PubMed  CAS  Google Scholar 

  56. Martin EI, Ressler KJ, Binder E et al (2009) The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am 32:549–575

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vreeburg SA, Hoogendijk WJ, van Pelt J et al (2009) Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry 66:617–626

    Article  PubMed  CAS  Google Scholar 

  58. Van Santen A, Vreeburg SA, Van der Does AJ et al (2011) Psychological traits and the cortisol awakening response: results from the Netherlands Study of Depression and Anxiety. Psychoneuroendocrinology 36:240–248

    Article  PubMed  CAS  Google Scholar 

  59. Balardin JB, Vedana G, Luz C et al (2011) Subjective mild depressive symptoms are associated with abnormal diurnal cycle of salivary cortisol in older adults. J Geriatr Psychiatry Neurol 24(1):19–22

    Article  PubMed  Google Scholar 

  60. Pruessner JC, Hellhammer DH, Kirschbaum C (1999) Burnout, perceived stress, and cortisol responses to awakening. Psychosom Med 61:197–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of Department of Endocrinology and the Central Laboratory of the JINHUA Central Hospital of the Zhejiang province for their kind cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ming Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study complies with ethical standards approved by the ethics committee of the Central Hospital of Jinhua and the academic committee of Zhejiang Normal University.

Informed consent

Written informed consent was obtained from each participant before the interview.

Funding

Research funding to conduct this work was provided by the Jinhua Central Hospital.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Y.M., Wang, L.J., Mao, H.X. et al. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals. Acta Diabetol 55, 531–539 (2018). https://doi.org/10.1007/s00592-018-1111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-018-1111-5

Keywords

Navigation