Skip to main content

Advertisement

Log in

Poly(ADP-ribosylated) proteins in mononuclear cells from patients with type 2 diabetes identified by proteomic studies

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

In diabetes, hyperglycemia increases reactive oxygen species that induce DNA damage and poly(ADP-ribose)polymerase activation. The aim of this study is to characterize the proteomic profile and the role of poly(ADP-ribosylation) in patients with type 2 diabetes.

Methods

A proteomic platform based on 2DE and MALDI-ToF spectrometry was applied to peripheral blood mononuclear cells obtained from two different cohorts in which diabetic (n = 14) and normoglycemic patients (n = 11) were enrolled.

Results

Proteomic maps identified WD repeat protein, 78-kDa glucose-regulated protein precursor and myosin regulatory light chain 2, as unique proteins in diabetic patients; vimentin, elongation factor 2, annexin A1, glutathione S-transferase P, moesin and cofilin-1 as unique in the normoglycemic; and calreticulin, rho GDP-dissociation inhibitor 2, protein disulfide isomerase and tropomyosin alpha-4-chain as differentially expressed between the two cohorts. An enrichment in PARylation in diabetic patients was observed in particular, affecting GAPDH and α-Enolase leading to a decrease in their enzymatic activity.

Conclusions

As the GAPDH and α-Enolase are involved in energy metabolism, protein synthesis and DNA repair, loss of their function or change in their activity can significantly contribute to the molecular mechanisms responsible for the development of type 2 diabetes. These data along with the proteomic profile associated with the disease may provide new insight into the pathophysiology of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guariguata L (2013) Contribute data to the 6th edition of the IDF Diabetes Atlas. Diabetes Res Clin Pract 100(2):280–281

    Article  PubMed  Google Scholar 

  2. Abdul-Ghani MA, Tripathy D, DeFronzo RA (2006) Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29(5):1130–1139

    Article  CAS  PubMed  Google Scholar 

  3. Shakeel M (2015) Recent advances in understanding the role of oxidative stress in diabetic neuropathy. Diabetes Metab Syndr 9:373–378

    Article  PubMed  Google Scholar 

  4. Velloso LA, Eizirik DL, Cnop M (2013) Type 2 diabetes mellitus—an autoimmune disease? Nat Rev Endocrinol 9(12):750–755

    Article  CAS  PubMed  Google Scholar 

  5. Mabley JG et al (2002) NFkappaB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. J Endocrinol 173(3):457–464

    Article  CAS  PubMed  Google Scholar 

  6. Xu B et al (2008) PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev 24(5):404–412

    Article  CAS  PubMed  Google Scholar 

  7. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  9. Schaefer-Graf UM et al (2000) Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by Type 2 and gestational diabetes. Am J Obstet Gynecol 182(2):313–320

    Article  CAS  PubMed  Google Scholar 

  10. de Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19(4):172–176

    Article  PubMed  Google Scholar 

  11. D’Amours D et al (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31(2):101–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai P, Canto C (2012) The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab 16(3):290–295

    Article  CAS  PubMed  Google Scholar 

  14. Bai P et al (2015) Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 26(2):75–83

    Article  CAS  PubMed  Google Scholar 

  15. Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101(1):4–15

    Article  CAS  PubMed  Google Scholar 

  16. Martire S et al (2013) PARP-1 modulates amyloid beta peptide-induced neuronal damage. PLoS ONE 8(9):e72169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mattiussi S et al (2007) Inhibition of poly(ADP-ribose)polymerase impairs Epstein Barr Virus lytic cycle progression. Infect Agent Cancer 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sodhi RK, Singh N, Jaggi AS (2010) Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications. Vasc Pharmacol 53(3–4):77–87

    Article  CAS  Google Scholar 

  19. Vida A et al (2017) Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev Biol 63:135–143

    Article  CAS  PubMed  Google Scholar 

  20. Soriano FG, Virag L, Szabo C (2001) Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. J Mol Med (Berl) 79(8):437–448

    Article  CAS  Google Scholar 

  21. Szabo C et al (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100(3):723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szabo C et al (2006) Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of Type 2 diabetic Leprdb/db mice. Diabetes 55(11):3004–3012

    Article  CAS  PubMed  Google Scholar 

  23. Tempera I et al (2005) Poly(ADP-ribose)polymerase activity is reduced in circulating mononuclear cells from Type 2 diabetic patients. J Cell Physiol 205(3):387–392

    Article  CAS  PubMed  Google Scholar 

  24. Dwinovan J et al (2017) Proteomic analysis reveals downregulation of housekeeping proteins in the diabetic vascular proteome. Acta Diabetol 54(2):171–190

    Article  CAS  PubMed  Google Scholar 

  25. Puthanveetil P et al (2012) Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1. J Mol Cell Cardiol 53(5):677–686

    Article  CAS  PubMed  Google Scholar 

  26. Obrosova IG et al (2004) Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 53(3):711–720

    Article  CAS  PubMed  Google Scholar 

  27. Long CA et al (2013) Poly-ADP-ribose-polymerase inhibition ameliorates hind limb ischemia reperfusion injury in a murine model of Type 2 diabetes. Ann Surg 258(6):1087–1095

    Article  PubMed  Google Scholar 

  28. Pieper AA et al (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96(6):3059–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rinaldo C et al (2012) HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody. Mol Cell 47(1):87–98

    Article  CAS  PubMed  Google Scholar 

  30. Yang M, Kahn AM (2006) Insulin-stimulated NADH/NAD+ redox state increases NAD(P)H oxidase activity in cultured rat vascular smooth muscle cells. Am J Hypertens 19(6):587–592

    Article  CAS  PubMed  Google Scholar 

  31. Whiting GC et al (2002) Purification of native alpha-enolase from Streptococcus pneumoniae that binds plasminogen and is immunogenic. J Med Microbiol 51(10):837–843

    Article  CAS  PubMed  Google Scholar 

  32. Butterfield DA et al (2006) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J Alzheimers Dis 10(4):391–397

    Article  CAS  PubMed  Google Scholar 

  33. Bai P (2015) Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958

    Article  CAS  PubMed  Google Scholar 

  34. Teodoro-Morrison T et al (2013) GRP78 overproduction in pancreatic beta cells protects against high-fat-diet-induced diabetes in mice. Diabetologia 56(5):1057–1067

    Article  CAS  PubMed  Google Scholar 

  35. Fang L et al (2015) Analysis of the human proteome in subcutaneous and visceral fat depots in diabetic and non-diabetic patients with morbid obesity. J Proteom Bioinform 8(6):133–141

    Google Scholar 

  36. Pietrani NT et al (2014) Annexin A1 concentrations is decreased in patients with diabetes Type 2 and nephropathy. Clin Chim Acta 436:181–182

    Article  CAS  PubMed  Google Scholar 

  37. Sharma M et al (2016) Association of glutathione-S-transferase with patients of Type 2 diabetes mellitus with and without nephropathy. Diabetes Metab Syndr 10(4):194–197

    Article  PubMed  Google Scholar 

  38. Du X et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112(7):1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432(2):159–184

    Article  CAS  PubMed  Google Scholar 

  40. Chuang DM, Hough C, Senatorov VV (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 45:269–290

    Article  CAS  PubMed  Google Scholar 

  41. Morgenegg G et al (1986) Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem 47(1):54–62

    Article  CAS  PubMed  Google Scholar 

  42. Singh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259(5093):365–368

    Article  CAS  PubMed  Google Scholar 

  43. Meyer-Siegler K et al (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 88(19):8460–8464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abd Elmageed ZY et al (2012) The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cell Signal 24(1):1–8

    Article  CAS  PubMed  Google Scholar 

  45. Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762(5):502–509

    Article  CAS  PubMed  Google Scholar 

  46. Byun YS et al (2015) Poly(ADP-ribose) polymerase inhibition improves corneal epithelial innervation and wound healing in diabetic rats. Invest Ophthalmol Vis Sci 56(3):1948–1955

    Article  CAS  PubMed  Google Scholar 

  47. Andrabi SA et al (2014) Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA 111(28):10209–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu N et al (2014) Nitrative modifications of alpha-enolase in hepatic proteins from diabetic rats: the involvement of myeloperoxidase. Chem Biol Interact 220:12–19

    Article  CAS  PubMed  Google Scholar 

  49. De Rosa V et al (2015) Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol 16(11):1174–1184

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant from MIUR and Sapienza University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria d’Erme.

Ethics declarations

Conflict of interest

None.

Ethical disclosure

All procedures performed with human participants were in accordance with the ethical standards of the institutional and research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Massimo Porta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, A., Tempera, I., Napoletani, G. et al. Poly(ADP-ribosylated) proteins in mononuclear cells from patients with type 2 diabetes identified by proteomic studies. Acta Diabetol 54, 833–842 (2017). https://doi.org/10.1007/s00592-017-1013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-1013-y

Keywords

Navigation